
M.Sc. Information Technology

Faculty of Computer Science and Electrical Engineering

Kiel University of Applied Sciences

Master Thesis

Conception and
Development of an

Artificial Intelligence for an
Online Multiplayer Game

Author Lars H. Engel

Matriculation Number

Supervising Professor

Second Examiner

Date, Place of Submission 30.08.2016, Kiel

Originality Statement

I hereby declare that

� this thesis and the work reported herein was composed by and originated

entirely from me,

� information derived and verbatim from the published and unpublished

work of others has been properly acknowledged and cited in the bibliog-

raphy,

� this thesis has not been submitted for a higher degree at any other Uni-

versity or Institution.

Date, Name, Matriculate Number, Signature:

i

Abstract

InnoGames GmbH is a company developing browser based games and mobile

games with more than 150 million registered players worldwide. One of their

games is the 2009 published game Grepolis with 25 million registered players.

Grepolis is a competitive strategy game in an Ancient Greek setting playable in

browsers or on mobile devices (iOS & Android).

Artificial intelligence is an important topic for video games. It can be used

to simulate human-like behavior for non-player characters (NPCs). NPCs can

be used to create opponents in a game or to enhance the universe of a game.

Introducing NPCs in a competitive strategy game can help to improve the long

time play value of the game. NPCs could, for example, be used to implement

in-game events, where players have to ally to defeat an NPC. Additionally, a

computer program acting like a human player could be used to perform real-life

server load tests to check if changes in, for example, database queries have an

effect on the performance of the game, before they go into production mode.

This thesis discusses the conception and development of the first artificial intel-

ligence for the game Grepolis. In this project, different strategies for artificial

intelligence in video games, with a focus on decision making, are evaluated how

good they fit to the game. Important questions concerning the implementation

of artificial intelligence in video games are asked and answered for this project.

A concept for an artificial intelligent NPC for the game Grepolis is built and im-

plemented. Finally an evaluation is done to prove that the implemented solution

corresponds to the requirements of the project.

After completing the project, InnoGames has a functional artificial intelligence

for the game Grepolis that simulates human-like behavior. The developed so-

lution uses the well known decision making techniques decision trees, state ma-

chines and goal oriented behavior to create a new way of decision making.

ii

Contents

1 Introduction 1

2 Background 4

2.1 InnoGames GmbH . 4

2.2 Grepolis . 5

2.3 Project Management . 9

2.3.1 Agile development . 9

2.3.2 Versioning and branching using Git 11

2.3.3 Documentation . 12

3 Artificial Intelligence in Video Games 13

3.1 Game AI versus Academic AI . 13

3.2 Simplicity versus Complexity . 14

3.3 Cheating in Game AI . 15

3.4 Decision Making . 17

3.4.1 Rule Based AI . 18

3.4.2 Decision Trees . 18

3.4.3 State Machines . 19

3.4.4 Goal-Oriented Behavior 19

3.5 Learning in Game AI . 20

3.6 Distinction of needed Techniques 22

4 Analysis 23

4.1 Grepolis in the Course of Time 23

4.2 Architecture of Grepolis . 24

4.2.1 Frontend . 24

4.2.2 Backend . 25

iii

CONTENTS CONTENTS

4.2.3 Interface to the Frontend Implementations 26

4.2.4 Server architecture . 26

4.3 Third Party Tools for Grepolis 28

4.3.1 Intelligent Agents versus Bots 28

4.3.2 Analysis of Grepolis Tools 28

4.3.3 Conclusion of Analysis of Tools for Grepolis 29

4.4 Requirement Analysis . 30

4.5 Milestones . 34

5 Conception 35

5.1 Programming Technology . 35

5.2 Abilities of the AI . 36

5.3 AI Model . 38

5.4 Conception of Decision Making 40

5.4.1 Evaluation of Decision Making Techniques 40

5.4.2 The Decision Making Model 42

6 Implementation 44

6.1 Daemon . 44

6.2 Design Patterns . 47

6.2.1 Object Oriented Programming 47

6.2.2 Factory Pattern . 50

6.2.3 Singleton Pattern . 51

6.2.4 Transactions . 52

6.3 The AI . 54

6.3.1 Implementation in the Backend 54

6.3.2 Implementation of Decision Making 55

6.3.3 Learning and Adaption 57

6.3.4 Strategies . 60

6.3.5 Daily Rhythm . 64

6.4 Admin Tool . 65

6.5 Quality Assurance . 66

7 Conclusion 68

7.1 Evaluating the AI . 68

7.1.1 Horizontal and vertical Robustness 68

7.1.2 Long-Term Evaluation . 70

iv

CONTENTS CONTENTS

7.1.3 Simulation of Live Worlds 71

7.1.4 Individuality of Decisions 72

7.2 Results . 73

7.3 Limitations . 75

7.4 Outlook . 76

A Requirements Analysis Document a

B Learning the Fight System k

C Test cases o

v

Chapter 1

Introduction

Chapter one introduces this master thesis. The motivation and goal of the project

are described and the outline of the thesis is given.

Motivation One of the biggest challenges in developing an online free-to-play1

game is keeping the churn rate of players as low as possible. Figure 1.1 shows

that only about twelve percent of users that register in the game Grepolis log in

a second time during the first week. After fourteen weeks this number decreases

to a value under two percent. Grepolis is a game that is already seven years

old. Yet it is still further developed by a team of nearly thirty employees every

day. The continuous release of new content in the game is one of the reasons

why the game is still successful after such a long time. Internal statistics show

that releasing new features can increase the amount of daily active users (DAU)

and can help to acquire new players. It is important to provide new content to

the players very often so that the long term play value of the game improves to

increase the player’s / customer’s retention.

Artificial intelligence (AI) is used in video games to imitate the behavior of a

human player. This way non-player characters (NPCs) can be realized. NPCs

can be used to tell the story of a game or to enhance the game world. An NPC

can act as a companion of the player or even as an enemy that the player has to

fight. In a competitive online strategy game like Grepolis an AI could be used

to implement an opposing force that needs to be defeated. A use case could be,

for example, an in-game event, where several players have to ally to be able to

1see section 2.1

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Percentage of login activity in weeks after registration

defeat the NPC. This can increase the activity of players and could also have a

positive impact on the long time play value of the game.

But not only the players could benefit of an AI. Since the AI simulates the

behavior of a human player, it could also be used to simulate the real world

conditions for a server. Sometimes, for example, when fixing bugs, it can be

useful to simulate a live world server to find issues that might be caused due to

performance bottlenecks of the server architecture. It could be possible to set

up a server with several thousand AI characters playing. This way, live world

server conditions can be simulated. Also server stress tests could be performed

using an AI.

Goal of this project Grepolis does not have an AI implemented yet. How-

ever, the game could benefit from the aspects mentioned above. Therefore, the

goal of this project is to implement an artificial intelligence for the game Gre-

polis that simulates the behavior of a real player. It is important that the AI

can be used for several different use cases. It should be possible to use the AI as

an in-game feature, but also as a tool to analyze the server performance of the

game. The implemented solution should be easy to maintain and extendable.

Furthermore, the tool should be manageable by the community management of

the game.

During the development, different techniques of artificial intelligence in video

2

CHAPTER 1. INTRODUCTION

games should be researched and applied to the game. Important questions

concerning artificial intelligence in video games need to be answered, before a

solution can be implemented.

Outline of the thesis The rest of this thesis is structured as follows: Chapter

2 describes the operational background of InnoGames and introduces the game

Grepolis. In Chapter 3 topics of artificial intelligence in video games that are

relevant for this project are addressed. Chapter 4 describes the analysis and,

among other things, gives an insight into the requirement analysis. Chapter 5

explains the conception phase of the project describing the concept created for

the AI. In Chapter 6 the implemented solution is documented and finally in

Chapter 7 the evaluation process is described and the project is concluded.

3

Chapter 2

Background

In this chapter a brief introduction into the company InnoGames and the game

Grepolis is given.

2.1 InnoGames GmbH

InnoGames GmbH is a developer and publisher of mobile and browser based

online games. About 370 people are employed in the two locations in Hamburg

and Düsseldorf.

History of InnoGames In the year 2003 the founders Eike and Hendrik

Klindworth and Michael Zillmer started developing the browser game Tribal

Wars as a hobby project. The following years the game got more and more

popular. 2007, with already more than 50 thousand active users playing Tribal

Wars, the decision was made to found a company to handle the operation and

continuous development of the game. Nowadays, nine years after the foundation

of the company, the six currently released games are played by more than 150

million users worldwide[1, 2].

Business Model of InnoGames The business model of InnoGames is based

on the free-to-play (F2P) principle. In contrast to a pay-to-play game, where

players have to spend money to get access to a game, a F2P game is playable

for free. To achieve revenue a F2P game contains special features that can be

bought with a premium currency, which can be obtained by spending money.

4

CHAPTER 2. BACKGROUND

2.2 Grepolis

Grepolis is a browser based strategic online game that was released in December

2009. Despite the fact that the game is already seven years old, the game still

has more than 160.000 daily active players.

Goal of the game The game is located in an ancient Greek setting. The

player takes control over a small town located on an island in the Mediterranean

Sea. Unfortunately, the island is also populated by towns controlled by other

players. Players have to ally or fight with other players for the limited resources

available on an island. The player has the task to build his own town up into a

big city. Beside the construction of a town, players have to establish a military

force to defend their town against attacks from other players or to conquer towns

of other players, so that they can build up an empire of up to several hundreds

of towns.

Figure 2.1: Screenshot of the game showing an island with several towns

Resources Nearly all actions taken in the game consume at least one of the

three available resources, which are Stone, Silver and Wood. Resources are

generated over time by resource production buildings in a town. Players can

also trade resources with other players or can obtain resources as booty when

attacking towns of other players.

5

CHAPTER 2. BACKGROUND

Figure 2.2: Screenshot of the game showing an advanced town

Towns A town consists of several buildings that each have an influence on the

game. The higher the level of a specific building is, the higher the effect of that

building gets. The following is a description of the most important buildings

that are relevant for this project. A detailed overview of all buildings can be

found in the Wiki of Grepolis, which is available online[3]:

� Senate: The senate, as the administrative center of a city, is used to

construct all other buildings. The higher the level of the senate is, the

shorter the construction time for buildings gets.

� Farm: The farm determines how big the population of a town can get.

Each level of the farm increases the amount of residents a town can have.

Residents are needed to construct buildings or to recruit fighting units.

� Warehouse: In the warehouse of a city the resources are stored. The higher

the level of the warehouse, the more resources it can store.

� Academy: The academy can be used to research technologies. Various

features of the game need to be researched, before they can be used. With

6

CHAPTER 2. BACKGROUND

each level the academy produces more research points, which can be used

to research new technologies.

� Barracks / Harbor: The barracks and harbor are used to recruit new units

for a military force. The higher the level of the barracks or the harbor is,

the faster the recruitment of new units will get.

� Timber Camp / Quarry / Silver Mine: Timber Camp, Quarry and Silver

Mine are the three resource production buildings and determine how much

resources a town generates in a specific amount of time. The higher the

level of one of the buildings is, the more resources of that type a town will

generate.

Figure 2.3: Screenshot of the game showing the unit swordsman in the barracks

Units To attack other cities, or defend a city, players have to recruit units

in the barracks or the harbor. In the barracks all land units can be recruited,

while in the harbor naval units (ships) can be recruited. Recruiting a unit costs

a specific amount of resources and population. Each unit is specialized either

on attacking or defending. Land units additionally belong to one of the weapon

7

CHAPTER 2. BACKGROUND

types distance, blunt or sharp. Additional parameters like movement speed or

amount of booty a unit can carry, differ for each unit.

To reach cities that are located on a different island, players have to use trans-

port boats that can be constructed in the harbor. Also attacking ships, like fire

ships, or defending ships, like biremes, can be constructed in the harbor.

Gameplay The gameplay of Grepolis mainly concentrates on decision making.

The player is not directly controlling a character’s position and does not need

coordination skills. Players interact with the game using a usual computer

mouse or via touching on a smartphone. By clicking on buttons features like

upgrading a building or recruiting a specific unit can be triggered.

Premium Features As described in 2.1, Grepolis is a free-to-play game,

which means that it can be played by anybody for free. The game contains

premium features that can be bought with gold coins, which need to be bought

with real money. Premium features are supposed to make the game more con-

venient for the users. One premium feature, for example, enables the player

to schedule seven building construction orders in the building queue instead of

only two.

Figure 2.4: The building queue as a standard (1) and premium (2) user

8

CHAPTER 2. BACKGROUND

2.3 Project Management

2.3.1 Agile development

Grepolis is developed using an agile development method similar to Scrum. Two

cross functional teams1 so called feature teams work in sprints2, that are always

two weeks long, on user stories3. Since the agile development process is not

relevant for this project, it is not described in detail here. For more information

about agile development using Scrum see[4].

Kanban This project was done independent from the usual sprint cycles and

was not part of the regular process of Grepolis. To keep track of the open tasks,

a Kanban board was used to visualize the tasks. Just as Scrum, Kanban is an

agile development method. But since some points of Scrum, like iterations using

sprints, commitments or predefined roles, are not part of a Kanban process, it

is more suited for a single software developer[5].

Figure 2.5: Example of a Kanban board

A Kanban board visualizes the work flow by dividing tasks into different columns

that represent the current state of the task. A task is moved into another column

when the state of the task changes. The columns of the Kanban board used in

this project where Backlog, To Do, In Progress, Feedback / Testing, Done. In

1A cross functional team combines people with different expertise (backend, frontend, art)
to a team rather than having e.g. one team for the backend department.

2In agile development a sprint is a specific period of time during in which a defined amount
of work has to be completed.

3In agile development a user story is the description of a requirement of the application.

9

CHAPTER 2. BACKGROUND

the Backlog-Column all tasks where gathered. Even tasks that where not part

of the initial scope of the project could be stacked here. The To Do-Column

contains the tasks that needed to be done in the near future. The tasks, which

where currently in development, where moved to the In Progress-Column. After

completion of the development, tasks were moved to the Feedback / Testing

column to leave room to test if a task was thoughtfully implemented. After

completion of testing, tasks where moved to the Done-Column. In addition to

visualizing the current state of a task, a Kanban board is also used to limit the

amount of tasks that are worked on simultaneously. In this project only three

tasks where allowed to be in progress at the same time.

The tool used to visualize the Kanban board was Trello. Trello is a free to use

web-based project management software to create Kanban boards in a standard

web browser[6]. The advantage of a digital Kanban board in contrast to a

physical board in the office is that the board is always available online and not

bound to a specific location.

Stakeholder involvement One core principle of agile development is a close

collaboration with the stakeholders of the project. The advantage of this is that

misunderstandings concerning the requirements of the project can be seen very

quickly and fixed before it could be too late[7]. To follow this principle, every

four weeks a meeting was set to inform important stakeholders about the current

state of the project. Stakeholders that attended those meetings where in-house

employees of InnoGames from different areas like software development, system

administration, game design, product management or community management.

Continuous improvement Another principle that was followed was the prin-

ciple of a continuous improvement process (CIP). CIP describes the process of

improving a product in small incremental steps in several iterations. Each it-

eration follows four steps of the so called PDCA- or Deming-Cycle, which are

Plan, Do, Check and Act (see Figure 2.6).

The tasks of each phase of the PDCA-Cycle are as follows [8]:

� Plan: Analyzing of the current status of the project, finding potential for

improvement and development of new concepts.

� Do: Development of solutions how to implement concepts and implemen-

tation of the solutions.

� Check: Verify that the concepts were implemented.

10

CHAPTER 2. BACKGROUND

� Act: If any deviation of planned tasks was found in the check state, mea-

sures can be created and taken to resolve issues with the implementation.

Figure 2.6: Plan-Do-Check-Act (PDCA) Cycle

Applied to this project continuous improvement meant improving the artificial

intelligence that controls the non-player characters (NPC) step by step. Starting

with a simple bot that could not make any decisions on its own in several

iterations an artificial intelligence was created that could take actions based on

decisions made on its own. While the first version executed decisions based

on parameters that where predefined in classes, the final version was able to

calculate parameters dynamically based on its current game situation.

2.3.2 Versioning and branching using Git

For code management InnoGames uses Git[9] repositories. Git is a standard for

source code management to make versioning of a project’s source code possible

and to simplify the collaboration of several people on the same code. Git enables

a team to easily develop on one project in different branches. This way features

can be developed without the risk of influencing the main production code of

the software.

“Branching means you diverge from the main line of development

and continue to do work without messing with that main line.”[10]

After completing the development of a new feature the so called feature branch

can be merged back into the main code. In this step the differences between the

two branches are compared and merged together.

11

CHAPTER 2. BACKGROUND

The main part of the Grepolis project is distributed in three repositories. One for

backend, browser frontend and mobile frontend. The most important branches

in the Grepolis Project are the master, beta and development branch. The

master branch contains the current code which is running on the live servers, the

beta branch contains the project code from the beta servers and the development

branch contains the changes from the current active sprint work.

The work of this project was done in an own feature branch. Since the project

lasted six months, the danger of diverging too much from the main Grepolis code

existed. To mitigate this risk, the development branch was regularly merged into

the feature branch. This way all the latest changes in the main code were also

available in the feature branch, but the development done in this project did

not influence the usual sprint work. At the end of the project the feature branch

could be merged into the development branch.

2.3.3 Documentation

Documentation is an essential part of developing an application. A good docu-

mentation helps understanding the architecture of a system and gives an insight

into design decisions. Especially for maintaining an application it is important

to have a good documentation so that knowledge can be easily obtained. Since

Grepolis is a software that is continuously improved by several developers a

good documentation was needed for this project.

InnoGames uses a Wiki powered by Atlassian Confluence to maintain documen-

tations about the products. Therefore, this project was also documented in the

Wiki. A new section was created that was divided into the subsections anal-

ysis, conception and implementation. After the project was completed, each

of the subsections contained all relevant information for the respective develop-

ment phase. While the analysis subsection gives, among other things, an insight

about technologies to implement an artificial intelligence in a game or about the

requirements analysis, the subsection about the conception answers all ques-

tions about design decisions. Finally, the implementation subsection provides

information concerning how the system was implemented. This includes the

implementation of the artificial intelligence but also further used technologies.

12

Chapter 3

Artificial Intelligence in

Video Games

Before it could be started to create a concept for the implementation, a research

about artificial intelligence (AI) in video games needed to be done. In this chap-

ter some important questions that can come up during the development of an

AI for a game are answered applied to this project. Furthermore, this chapter

gives an insight into techniques of AI that are relevant for this project.

3.1 Game AI versus Academic AI

Game AI, as it is seen in this project, needs to be differentiated from artificial

intelligence that is developed for academic purposes such as researches. A big

difference is the approach how problem solving is handled. The main focus of

academic AI is to develop a rational thinking agent that is designed to solve a

task or problem optimally[11]. This is the desired behavior in many use cases

of AI. For example, an intelligent agent that controls a robotic arm in a factory

needs to solve its task accurately every time.

In contrast to that, the goal in developing an AI for a game is not to create

a solution that always finds the optimal solution to solve a task. It is not

desirable that an AI will always beat the player because it knows the optimal

strategy to win. Nobody wants to play a game that has an unbeatable AI

implemented. It is not necessarily important that a task is solved hundred

percent correctly, but that a task is solved in a similar way as a human player

13

CHAPTER 3. ARTIFICIAL INTELLIGENCE IN VIDEO GAMES

would solve a task. In a first-person shooter game, for example, an NPC could

have perfect aiming better than any human player could ever have. However,

such an implementation would counteract the purpose of a game AI.

“Academic AI can be about a great many things. It can be about

solving hard problems, recreating human intelligence, [...] Game AI

should be about one thing and one thing only: enabling the developers

to create a compelling experience for the player—an experience that

will make the player want to spend time with the game[...].”[12]

The idea of game AI is to entertain the player and give him a believable and fun

impression of an enemy. To achieve this, it is not absolutely necessary that the

actions of the NPC are completely made up by the AI itself. Sometimes it can be

a better solution to implement a simple rule based system that executes actions

based on predefined conditions, than having a complex intelligent algorithm.

The difficulty with an algorithm that handles task autonomous is that it could

come to illogical decisions. Too much autonomy and unpredictability in the

actions of the NPC could be undesirable[13]. Chapter 3.2 discusses when it is

useful to implement real artificial intelligence and when to implement simple

rule based behavior for a game AI.

3.2 Simplicity versus Complexity

When developing an artificial intelligence for a video game it is important to

keep the balance between complexity and simplicity.

“It is a common mistake to think that the more complex the AI in

a game, the better the characters will look to the player.

[...]

There have been countless examples of difficult to implement,

complex AI that have come out looking stupid. Equally, a very

simple technique, used well, can be perfect.”[14]

During the development, one has to keep thinking: “Is there a simple way to

implement the wished behavior?”. The practice of implementing the simplest so-

lution that works is also part of the twelve principles of the Agile Manifesto[15].

The player of a game does not see what happens “behind the curtain” of the

game, so he does not care how a functionality is implemented but only cares

14

CHAPTER 3. ARTIFICIAL INTELLIGENCE IN VIDEO GAMES

that the implementation works for him. In some situations, a simple rule based

implementation of a functionality may be a better solution than a very complex

learning algorithm, which may look worse than the simpler solution. As Ian

Millington says in his book Artificial Intelligence for Games:

“Knowing when to be complex and when to stay simple is the most

difficult element of the game AI programmer’s art. The best AI

programmers are those who can use a very simple technique to give

the illusion of complexity.”[14]

A problem of simple AI techniques is, however, that they can sometimes be

outsmarted very easily. As described in section 3.4.1, if an NPC controlled by

an AI will always react in exactly the same way in a specific situation, it is easily

detectable for the players. This can, on the one side, make playing against the AI

very easy for the players and, on the other side, can take away the fun of playing

the game completely. If players are able to realize the pattern of decision making

of an AI the illusion of an intelligent opponent vanishes completely. Especially

actions of an NPC that are recognizable from the player’s perspective need to

give the player the impression that the AI is acting reasonable.

In Grepolis players mainly interact with each other during fighting. Therefore,

this part of the AI needed to be implemented very thoughtfully. Players might

question the believability of the AI if it attacks in unusual situations or uses

peculiar amounts of units like a usual human player would not do. Also, as

mentioned above, if the decision making of this part of the AI is implemented

too simple, players might be able to outsmart the AI. If the AI, for example,

always uses the same amount of units to attack, or always attacks at the same

point in time, players can prepare for such an attack very easily.

The decisions of the part of the AI that is responsible for the construction of

the town are not clearly visible for the players. It is not easily detectable for a

player how another player constructs his town. Therefore, it might not be as

critical to use a simpler algorithm in this part of the AI as it could be for the

so called “warfare tasks”.

3.3 Cheating in Game AI

During the development of an AI for a game an important question needs to

be answered beforehand: “Should the AI cheat or not?”. With cheating an AI

15

CHAPTER 3. ARTIFICIAL INTELLIGENCE IN VIDEO GAMES

would be able to take actions or gain information that are unavailable for a

human player in the same situation[16].

The answer to the question, would have a fundamental impact on the way the AI

can handle tasks. The advantages of letting the AI cheat are that the complexity

of the implementation gets lower, because some game mechanics may not need

to be implemented.

Jonny Ebert, the lead game designer of the game Dawn of War 2[17], made the

following statement about implementing AI in video games:

“Cheat wherever you can. AIs are handicapped.

[...]

Never get caught cheating. Nothing ruins the illusion of a good AI

like seeing how they’re cheating.”[18]

For features, where complex strategic thinking is needed for making a decision,

it may be a better solution to implement a simple cheating mechanic than im-

plementing a very complex AI. Secondly, the maintainer of the AI has more

control over the decisions of the AI, when some game mechanics are bypassed.

By setting for example the specific amount of units or level of buildings a town

controlled by an AI has, you can influence the strategy of an AI directly. How-

ever, a cheating AI might not be well received by the community of players,

because they could get the feeling of being treated unfair. A good example for

a cheating AI is the AI in the games of the strategy game series Civilization[19],

which are currently published by 2K Games[20]. The AI could, for example,

bypass restrictions to build specific buildings or could obtain knowledge about

the current progress of the human player to adapt his own strategy, which is

not possible for normal players[21]. Although the Civilization games are very

popular, the AI of the games was always disliked also because of the fact that

the AI has an advantage towards a human player. Players of the games even

created modifications, so called Mods, to exchange the AI with an own created

one.

The AI in this project could cheat in several ways. One possibility would be,

that the AI has the ability to access the database directly to see for example

how big the army of an opposing town is, or how far the construction of such

a town is. This is knowledge that cannot be easily obtained by a standard

player and would give the AI an advantage in deciding how and when to attack

an opposing town. Another way of cheating could be to bypass specific game

mechanics to simplify the game for the AI by, for example, giving the AI an

16

CHAPTER 3. ARTIFICIAL INTELLIGENCE IN VIDEO GAMES

infinite amount of resources. Without the need of determining how to spend

the limited resources the decision making process for the AI could be simplified

a lot. An even more drastic approach could be to bypass the recruitment and

building process completely and set values like the amount of units of each

type or the level of the buildings of a town directly in the database. All these

examples would simplify the process needed for the AI to make a decision how

to act.

For this project, the decision was made that the AI should not cheat and should

only take actions and gain information that are available for usual human play-

ers. This decision may add more complexity to the implementation, but it

secures that the AI has no unfair advantage towards the human players. Addi-

tionally, the point that one focus of this project was to simulate the behavior of

a human player in the game with an AI, spoke against cheating so that the AI

has to consider the same information as a human player to make the decisions

how to act in the game.

3.4 Decision Making

In the context of game AI, the term decision making refers to the ability of an

NPC to decide what to do. The process of decision making can be realized in

several different ways. Yet the structure of the process is always similar. A de-

cision maker processes knowledge as input and generates actions to be executed

as output. The knowledge can be divided into external and internal knowledge,

where internal knowledge is information about the character itself, like its cur-

rent state or condition (e.g. health), and external knowledge is information the

character has about the game environment around it.

Figure 3.1: Schema of a general decision making process (adapted from [22])

17

CHAPTER 3. ARTIFICIAL INTELLIGENCE IN VIDEO GAMES

The actions a decision maker generates can affect the character either inter-

nally by, for example, changing the state of a character or adapting the goals a

character pursues, or can have external effects on the game environment itself.

The following subsections shortly describe different techniques of decision mak-

ing, which are used in this project.

3.4.1 Rule Based AI

Rule based systems consist of rules that state, when a specific action needs to be

taken. The AI analyzes knowledge about the world surroundings and examines

if the conditions of the rules are met. When the conditions of a rule are met,

the defined action can be executed[23].

Figure 3.2: Example of a rule-based system

Rule based AI systems are very simple to implement and can be an effective

method. The relation between rules and actions is always 1:1 which means that

one condition (rule) will always result in the same action being triggered. This

makes it easy to test the correct functionality of such a system. However, players

can outsmart a rule based AI also very easily. A player might be able to exploit

the AI if he understands the structure, when a specific rule triggers an action.

3.4.2 Decision Trees

Decision trees can be seen as an enhanced way of structuring rules for decision

making by visualizing them in a tree like structure. The advantage of a tree

structure is, on the one hand the easy visualization of the decision making

process by providing an easy to understand hierarchical view of the system and,

on the other hand, a tree structure can be easily and fast traversed to find a

specific action[24].

The nodes of a decision tree can be divided into actions and decisions. A decision

node can be followed by another decision node or an action node, while an action

node should have no child nodes.

18

CHAPTER 3. ARTIFICIAL INTELLIGENCE IN VIDEO GAMES

Figure 3.3: Example of a decision tree

3.4.3 State Machines

State machines1 are a useful tool in game AI development. They provide an easy

computational model to implement state driven applications. A state machine

consists of several states, which define the current status of the machine. The

machine can only be in one state at a time. States are connected by transitions.

A transition describes the conditions that need to be met so that the machine

transits from one state to another[25].

In game AI development state machines can be used to define the behavior of a

character for a specific situation. A state of a character associates with specific

actions or behavior. That means that a character will act in a specific way as

long as he remains in the same state. When the state of a character changes,

typically also his behavior changes. State machines can be visualized using a

state diagram. Figure 3.4 shows an example state machine diagram for a game

AI of a guard.

3.4.4 Goal-Oriented Behavior

The previous techniques for decision making focus on reacting. The decision

maker processes a set of input information and produces an action as output

based on the gathered information. That means that the decision maker depends

on previous actions or happenings, before it can produce an action for the AI

controlled character as result. For a convincing game AI this is not enough.

What happens, for example, with a character that has nothing to react on?

1In this context state machines refer to so called finite-state machines, which have a defined
set of states, in contrast to infinite-state machines, which can have a varying amount of states
and transitions.

19

CHAPTER 3. ARTIFICIAL INTELLIGENCE IN VIDEO GAMES

Figure 3.4: Example of a state machine for a game AI

A goal-oriented behavior (GOB) enables a game AI to come up with its own

desires and goals to fulfill. A character that has the ability to choose a goal to

reach by itself can act autonomously and does not rely on specific input. This

can make the actions of the character less repetitive and less predictable and

enables the character to adapt his actions to his specific situation [26].

A GOB consists of goals and actions. Goals define the motive a character has.

They determine the actions a character takes to eventually achieve the goals.

The goals of a character can have a level of insistence to signify the importance

of a goal. A character should try achieve goals with a high level of insistence

with a higher priority than goals with a lower level.

3.5 Learning in Game AI

Learning and Adaption Learning in the area of game development can

be used to let an NPC controlled by an AI adapt to players or specific game

situations. With learning two AI controlled characters may behave differently in

20

CHAPTER 3. ARTIFICIAL INTELLIGENCE IN VIDEO GAMES

the same situation because they have learned different behavior from previous

events in the past. Characters that can learn and behave differently under the

same circumstances increase the impression of real intelligence significantly.

Learning can also stand for the ability of a character to learn what action is

best in which situation. This can reduce the effort that is needed to develop and

implement the hard coded AI logic. Algorithms like ID3[27], for example, can

be used to generate decision trees dynamically using observations from previous

actions.

Online and Offline Learning Learning can be performed either online or

offline[28]. When learning is done while the player is playing, this is called online

learning. Online learning allows to adapt the behavior of the AI dynamically

to the actions taken by a player. The AI can continuously learn the style how

a player plays the game and can adjust decisions based on this learning. This

can, for example, be used to analyze how aggressive a player plays. If a player

attacks an AI controlled character more often, the AI could react with attacking

this specific player also more often. Beside online learning, one can also perform

offline learning which refers to learning that is done during the development of

the AI or while the game is not currently running. Offline learning is performed

in an initial training phase and can be used to process data about the game and

calculate strategies based on that. After the training phase the outcome of the

learning will not change until the next training phase is performed.

Difficulties with Learning Using online learning in game AI development

can be risky, because the decisions of an AI controlled character may be unpre-

dictable and are hard to test. If the character reacts differently based on the

behavior of the player it can be hard to reproduce a specific bug. With offline

learning it is easier to test the behavior of an AI because the strategy of the AI

learned during the initial training phase will not change.

“We normally want the learning AI to be able to generalize from

the limited number of experiences it has to be able to cope with a

wide range of new situations.”[29]

The quote above addresses another issue with learning: the problem of over-

fitting [30]. If an AI character is confronted with a limited amount of experiences

for a specific situation and adapts its behavior based on that, this could lead

21

CHAPTER 3. ARTIFICIAL INTELLIGENCE IN VIDEO GAMES

to the problem that the AI adapts only to those limited experiences and would

not be able to handle different situations.

3.6 Distinction of needed Techniques

As written in section 2.2, the gameplay of Grepolis does not require skills to

control a player or aim at an opponent, like for example, a first person shooter

requires. The main task that an AI for the game needs to be able to perform

is decision making. The execution of the decisions afterwards can be realized

very easily by calling the APIs and models provided by the game backend logic.

Therefore, specific topics of game AI are not needed for this project. The prob-

lem of movement and path finding, for example, can be neglected completely.

Also simulating human senses like vision or hearing was not needed for the AI

controlled NPCs.

22

Chapter 4

Analysis

In this chapter the analysis process of this project is described. This includes the

analysis of the architecture of Grepolis, the requirement analysis and the mile

stone analysis.

4.1 Grepolis in the Course of Time

Grepolis is a browser game of the early generation. When Grepolis was released

in 2009, browsers where not as powerful as modern browsers. The later intro-

duced new web standard HTML5[31] enabled the native use of multimedia and

graphical content (e.g. rendering of vector graphics) in the browser. Combined

with the JavaScript library WebGL[32], which can be used to render interactive

2D or 3D graphics, games nowadays run in any modern standard web browser.

Additionally, browser ad-dons, like the plugin for games made with the game

engine Unity 3D[33], allow even more complex games to be played in modern

browsers.

However, when Grepolis was designed, those technologies did not exist. Grepolis

was designed completely using so called Dynamic HTML (DHTML) technolo-

gies, which are HTML, CSS, JavaScript and PHP. The browser version of Grepo-

lis can be seen as an interactive website, since it is in the fundamental structure,

a usual HTML website. Initially intended to be a classic browser game, in 2013

a mobile application was developed using the Adobe Air runtime[34] so that the

game can also be played on smartphones, which became very popular during

the lifetime of Grepolis.

23

CHAPTER 4. ANALYSIS

4.2 Architecture of Grepolis

The architecture of Grepolis can be divided into frontend and backend. While

in the backend all game logic and storage of data is handled, the frontend is

responsible for visualizing the game. Players interact with the frontend to take

actions in the game. This triggers game logic being handled in the backend.

After the logic is computed, data, that might have changed, is sent to the

frontend by the backend.

4.2.1 Frontend1

As described in section 4.1, Grepolis can be played in a webbrowser on a com-

puter or on a smartphone as an app downloadable in an app store. Therefore,

the game consists of two different frontend implementations.

Browser Frontend The browser frontend uses standard web development

technologies like HTML, CSS and JavaScript. HTML is the foundation of the

game and describes all content of the elements, CSS is used to generate the “look

and feel” by e.g. defining the colors of objects or defining sprite sheets2 and

JavaScript can be used to dynamically modify the game content. Additional

libraries like jQuery[35] or Underscore[36] are used to extend and simplify the

features of JavaScript.

Mobile Frontend The mobile frontend is developed with the Adobe Air run-

time. Adobe Air is a cross-platform runtime system. The fact that Adobe Air

can be used to implement cross-platform applications makes it easy to develop

one application and release it for several platforms. The Grepolis App is devel-

oped for Android and iOS smartphones.

1Since the frontend of Grepolis is not relevant for this project, it will not be described in
great detail. This section should only give a short insight into the frontend.

2A sprite sheet combines several images into one file. This way the number of requests to
the server can be reduced and bandwidth can be saved.

24

CHAPTER 4. ANALYSIS

4.2.2 Backend

The backend consists of several components that are needed to run the game.

The most important backend components are now described in closer detail.

Backend Game Logic The game logic written in PHP contains all the code

that is needed to run the game. This includes calculation of the result of actions

taken by the players like, for example, calculating the outcome of a fight between

two armies. The backend logic runs using the Zend Framework[37], which is a

PHP framework3 to enhance developing applications in PHP. Additionally, the

tool Composer[38] is used to manage several further dependencies to external

libraries that are used in the backend logic. One example is the framework

PHPUnit[39], which is used for implementing unit and integration tests.

PostgreSQL Database In the databases in the backend all data that needs

to be preserved for a longer time is stored. This includes information about

the players, their towns and units and several further not necessarily game

related data like, for example, login credentials. The used database is the object-

relational database management system PostgreSQL[40]. The databases can be

accessed by the backend game logic using the Zend Database Adapter Zend Db

provided by the Zend Framework. Zend Db provides an easy interface to connect

a PHP application with a relational SQL Database.

Daemon Many game functionalities need to run continuously or without the

interaction of a user. The production of resources, for example, needs to be

calculated every second. Also game actions that need to be called at a specific

time need to be handled. Therefore, some part of the game logic is handled by

daemons, which run a PHP instance continuously in the background and do not

require direct user input to be started.

Additional Technologies The backend consists of several additional tech-

nologies like cronjobs4 or a redis5 queue. They are not described in greater

detail due to the fact that they are not important for this project.

3A framework provides a universal and reusable software environment to simplify the de-
velopment of an application.

4A cronjob is a task that needs to be handled at a specific point in time. Cronjobs are
used in Grepolis to clean up the databases or calculate rankings.

5Redis is a in-memory data structure store. In Grepolis redis queues are used to store
information which is needed only for a short amount of time.

25

CHAPTER 4. ANALYSIS

4.2.3 Interface to the Frontend Implementations

The backend provides Application Programming Interfaces (API) for the fron-

tend. Since Grepolis has two frontend implementations that use different tech-

nologies, it is important to have a unique interface for communicating to the

backend. Therefore, all actions or information requested by one of the fron-

tend systems need to go through an API. If one of the frontend systems calls

a method provided by an API, the API will call logic in the backend. After

computing, the API will return the result of the call as a JSON6 object back to

the frontend.

Figure 4.1: Overview of the call flow for an API

To call an API the frontend performs an asynchronous HTTP request7 to a

specific URL using the POST method. A controller in the backend calls the

correct API method and returns the result as the HTTP response back to the

frontend. Listing 4.1 shows the relevant parameters for the API call to request

the password of a specific user.

4.2.4 Server architecture

There are four different kinds of servers needed to run the game. For each

market, where the game is available, there is one Master Database Server and

6JSON is a standard to transmit data objects consisting of a key-value pairs.
7In the HTTP protocol a client sends an HTTP request to a server requesting some kind

of information or action to be performed server side. On the server this request is processed
and the result is sent back to the client as an HTTP response.

26

CHAPTER 4. ANALYSIS

Listing 4.1: Example of the parameters of an API call from frontend to backend

Request URL: 'http ://[market]. grepolis.com/api'

Request Method: 'POST'

Content : {

'class_name ' : 'ApiPlayer ',

'method_name ' : 'requestPassword ',

'params ' : {

'username ' : 'Peter Pan',

'email ' : 'peter.pan@neverland.com'

}

}

two Master Web Server. Furthermore, for each game world there is one Game

Database Server and two Game Web Server (see Figure 4.2). Each Server is

responsible for a different task.

Master Database Server On the master database server the market database

is located. In this PostgreSQL database all information is stored that is needed

globally for the whole market. This includes, for example, the user credentials

or the amount of premium currency a user has. The master database server also

handles the master daemon and executes cronjobs that need to run globally.

Master Web Server The master web servers handle all market related re-

quests. This includes API calls to register new players for a specific market or to

login a player to a market. Each market has two master web servers that share

the requests. This process is called load balancing and increases the availabil-

ity and reliability of the game by adding redundancy. If, for example, one web

server crashes there is still a second web server running. Furthermore, with load

balancing the load for the servers is divided and the performance of the game

can be increased. The load balancing is done by the used web server nginx[41].

Game Database Server Similar to the master database server, the game

database server runs the PostgreSQL database that stores all world related

data like, for example, information about the town of a specific player or the

amount of units a player has. Additionally, the game database server handles

the game daemons and the cronjobs for this specific world.

27

CHAPTER 4. ANALYSIS

Figure 4.2: Scheme of the Server Architecture of a Grepolis market

Game Web Server The game web servers handle all game world related

requests from the frontend coming to the backend. Similar to the master web

servers, each world has two game web servers that share the requests that come

from the players. The load balancing is also done by a nginx web server.

4.3 Third Party Tools for Grepolis

4.3.1 Intelligent Agents versus Bots

In game development the terms “intelligent agent” and “bot” are often mixed.

However, the meaning of the words differs. A bot is a program that executes

automated tasks defined by a user. Usually a bot cannot make own decisions

and depends on the input of a user to tell him what to do. In contrast, an

intelligent agent can perform actions based on own decisions. An intelligent

agent does not need a user to tell him what to do, because it has own decision

making algorithms, which make decisions based on parameters that might be

predefined or are generated by analyzing the world surroundings of the agent.

4.3.2 Analysis of Grepolis Tools

An analysis was done to find out, what kind of tools for Grepolis exists and

how they are implemented. The community of Grepolis players is very active in

28

CHAPTER 4. ANALYSIS

creating their own scripts or tools to simplify the game. The variety goes from

browser scripts to improve the user interface experience to desktop applications

that can be used to automate tasks in the game, the latter being prohibited by

the terms of the game.

Many tools aim on simplifying the process of recruiting units, upgrading build-

ings or gathering resources. The bot GrepolisBot[42] for example is a desktop

application written in Java that can be used to automate the unit production

and the construction of a town.

Figure 4.3: Screenshot of the tool GrepolisBot

Users can set a specific amount of units that should be produced. After the goal

is set, the tool will try to recruit as many units of each kind as defined by the

user. Similar to the unit production a user can define the desired level of each

building. The tool will check the building level of the buildings and will try to

upgrade the buildings as long as the maximal desired level is not reached.

4.3.3 Conclusion of Analysis of Tools for Grepolis

The tool described in 4.3.2 is a good example to differentiate between a bot

and an intelligent agent. The tool cannot make any own decisions. It depends

fully on the input of a user to tell him what to do. If a user, for example, does

not enter any units to produce or sets specific building levels, the tool will not

perform any actions.

All found tools can be categorized as bots, because all of them depend on user

input to tell them what to do. This behavior is in contrast to the desired

implementation of this project which needed to be able to make own decisions.

29

CHAPTER 4. ANALYSIS

4.4 Requirement Analysis

A requirement analysis was done to find out what are the most relevant require-

ments that the final product needs to have.

Stakeholder analysis Before a requirements analysis could be performed, the

relevant stakeholders8 for the project needed to be found, because the stake-

holders are the most important source for gathering requirements. The final

outcome of the stakeholder analysis was a stakeholder matrix, which visualizes

all important stakeholders and their corresponding value of influence (power)

and interest for the project. Depending on the interest and power a stakeholder

has for the project, one can decide how to interact with the stakeholder (see

Figure 4.4).

Figure 4.4: Stakeholder Matrix

Involvement of Players During the requirements analysis the question, if

the community of active Grepolis players should be involved in the development

process, arose. It is obvious that the players, as one of the most important

stakeholders, play a key role in accepting a new feature. By involving them

in the development process one can be certain that the development goes into

a direction that is desired by the players. A player knows best what kind of

functionality he expects from a new game feature. The difficulty with this

project was, however, the long development time of nearly six months and the

uncertain outcome of the project. Letting the players know very early of the

8A stakeholder is any person or group of people that is in any way interested in the out-
come of a project[43].

30

CHAPTER 4. ANALYSIS

development of a new feature can lead to expectations that cannot be fulfilled.

This is why the decision was made to keep the development of the new feature

as a secret to the players. But since some of the members of the Grepolis

development team are also active players of the game, they could act as the

stakeholder group “players”.

Requirements in Agile Development Since this project was developed in

an agile environment, the requirement analysis did not result in a fixed amount

of features that needed to be developed to accomplish the goal of the project.

Unlike in traditional software development, where the amount of features to be

implemented (requirements) is fixed at the beginning of the project and should

not change until the end of the project, in agile development the requirements

stay flexible and are likely to change during the development process. The value

or quality driven approach of agile development fixes the available resources and

the date to finish the project and leaves the scope of the project flexible[44]. The

resources of this project was the work one developer can do. The date or time

for this project was six months.

Figure 4.5: Flipping of the iron triangle with agile development (adapted from
[44])

31

CHAPTER 4. ANALYSIS

Requirements gathering In interviews with different stakeholders require-

ments where gathered. The initial requirement analysis resulted in one main

user story that states the main goal of this project.

The main story was:

“As a player I want to be able to interact with a non-player character

so that I have a better game play experience.”

The main story could be divided into smaller sub stories, which described special

requirements in greater detail. Furthermore, the sub stories could be divided

into functional and non-functional requirements, where non-functional require-

ments define the overall qualities or attributes of the system while functional

requirements refer to specific functions of the system. The requirements analysis

was stated in a requirements analysis document that can be found in Appendix

A.

The analysis resulted in the following list of requirements:

Functional Requirements

F-P1 As a player I want the NPC to do researches in the academy so that

I have a worthy enemy.

F-P2 As a player I want the NPC to upgrade his towns buildings so that

I have a worthy enemy.

F-P3 As a player I want the NPC to defend itself on an upcoming attack

so that I have a worthy enemy.

F-P4 As a player I want the NPC to attack other players so that I have a

better game player experience.

F-P5 As a player I want the NPC to recruit units so that I have a worthy

enemy.

F-P6 As a player I want the NPC to use heroes so that I have a worthy

enemy.

F-P7 As a player I want the NPC to trade resources so that I have a

worthy enemy.

F-P8 As a player I want the NPC to colonize towns so that I have a worthy

enemy.

32

CHAPTER 4. ANALYSIS

F-P9 As a player I want the NPC to use spells so that I have a worthy

enemy.

F-P10 As a player I want the NPC to solve island quests so that I have a

worthy enemy.

F-P11 As a player I want the NPC to interact with farming villages so that

I have a worthy enemy.

F-CM1 As a community manager I want to create new NPCs via the admin

tool.

F-CM2 As a community manager I want to be able to manage existing NPCs

via the admin tool.

F-SI As a system integrator I want to have a simulation of a human player

so that I am able to do server load tests.

Nonfunctional Requirements

NFA-1 As a player I want the NPC not to be available all the time so that

I have a better game play experience. (Availability)

NFI-1 As a developer I want to be able to work on the system without

spending much time in working into the used technology so that I

can quickly understand the system. (Implementation)

NFIT-1 As a product owner I don’t want that the system can be misused to

cheat in the game. (Integrity)

NFP-1 As a player I don’t want that the performance of the game is wors-

ened with this new feature so that I can play the game as before.

(Performance)

NFR-1 As a product owner I want the system to be tested during the im-

plementation and integration. (Reliability)

NFS-1 As a system integrator I want to be able to run the system on the

current server setup so that minimal extra configuration is needed.

(Supportability)

NFU-1 As a player I want to be able to distinguish NPCs and other players.

(Usability)

33

CHAPTER 4. ANALYSIS

4.5 Milestones

After the requirements were gathered, a milestone analysis was done to de-

fine when a specific phase of the project needed to be finished. The following

milestones were defined:

Milestones Description Planned
Date

Achieved
Date

1 Start of the
project

01.03 01.03

2 Concept ready Requirement analysis is
complete, model for AI is
developed and concept to

implement AI is
complete.

31.03 04.04

3 Feature Freeze No new features should
be implemented

afterwards.

15.07 20.07

4 Implementation
finished

All functionality and
tests are implemented.

31.07 02.08

5 Testing finished All functionality is tested. 15.08 15.08
6 Submission of

thesis
Documentation and
Thesis are complete.

30.08 29.08

Table 4.1: Milestones

Milestone 1 states the start date of the project. Milestone 2 is the point, when

the concept to be implemented should be completely finished. The outcome of

milestone 2 was a requirements analysis document and a described concept for

the implementation. The next milestone is the feature freeze with milestone 3.

After the feature freeze no new features should be implemented. The feature

freeze was introduced to secure that all implemented features are thoughtfully

implemented and that there is enough time in the implementation phase to test

all implemented features and to document the product. Milestone 4 is reached,

when the implementation is completely done. This includes cleanup of the

source code, writing of unit and integration tests and in-source documentation.

After that, when milestone 5 is reached, the project should be tested concerning

acceptance and functionality. Finally, milestone 6 states the end of the project

when the documentation and the thesis should be done.

34

Chapter 5

Conception

After the analysis was complete, the concept for the AI could be created. This

section gives an insight into the decisions made during the conception phase.

The AI techniques found during the research phase are evaluated concerning

their fit to the requirements of the game. Finally, the created model for the AI

and for the decision making is described.

5.1 Programming Technology

The technology used to implement the AI was not restricted by the product

owners. This is why during the conception phase the question arose which

programming technology to use to implement the project. Two possibilities

existed for the implementation: The project could be implemented on the one

hand by integrating it into the backend code of Grepolis, on the other hand it

could be possible to create an independent solution that uses the provided APIs

to communicate with the backend similar to the mobile and browser frontend

of the game.

The advantages of implementing the project in the backend code were firstly

that this enables to use all the functionality of the backend directly. This means

being able to use the models of the game without the need of extra APIs or in-

terfaces and the ability to access the database directly. Secondly the integration

into the backend code means that artificial intelligence and backend code are

implemented in the same programming language, which makes the maintenance

for the developers easier. On the downside using the same technology as the

35

CHAPTER 5. CONCEPTION

backend code for the AI can increase the load for the servers that run the game.

Also one can argue that the artificial intelligence is logically not part of the

backend code and should also be separated physically from the backend. Ad-

ditionally, it can be questioned if PHP as a scripting language, whose main

purpose is the creation of dynamic web applications[45], is the best solution to

implement an artificial intelligence.

The implementation of the AI as an independent application that communicates

with the backend via APIs enables to use a language that might be more suited

for AI programming like LISP or PROLOG[46]. Using LISP or PROLOG could

make an implementation of, for instance, decision trees or state machines1 easier.

On the other hand, using an independent solution would mean that interfaces

are needed to communicate with the APIs from the backend. Another major

disadvantage for using another technology is that a runtime environment for the

used technology needs to be installed on the servers that run the game. With

more than 50 running game worlds each using three servers this would have a

major impact for system administration.

After consideration of all the facts, the decision was made to implement the

AI mainly by integrating it into the backend code of the game. The need of

installing additional runtime environments on the servers was not acceptable.

Also the fact that using a technology like LISP or PROLOG, which are not

used in the company InnoGames yet, makes the maintenance of the code for

developers harder, since they have to get accustomed to the language, had a big

influence on the decision. Additionally, PHP supports since version 5 object-

oriented programming. This means that an implementation of, for example,

decision trees or state machines can be easily achieved (see section 6.3).

5.2 Abilities of the AI

During the conception phase, an analysis was done to find out what the abilities

are that the AI needs to have. Since the AI needs to be able to perform the

same tasks as a human player, the functionality of the game was analyzed. All

possible actions of a player were found and ranked according to their importance

for progressing in the game. The actions were later categorized into essential and

additional abilities. While the essential abilities are crucial to play the game, the

additional abilities can be seen as not so important. Furthermore, the essential

1see section 3

36

CHAPTER 5. CONCEPTION

abilities could be categorized into the two main game play mechanics of the

game which are construction of a town and warfare tasks.

This division helped during the development process since it made the decision

of what to implement at which time easier. It was clear that it should be started

with implementing all the essential abilities, so that the AI is able to play the

game on a basic level. After the essential abilities were working, remaining

project resources could be used to implement some of the additional abilities.

Essential abilities

� Construction of a town

– Construction and upgrading of buildings

– Researching technologies in the academy

� Warfare tasks

– Recruiting of units

– Attacking of other players

– Defending of the town

Additional abilities

� Interaction with farming villages

� Assignment and use of heroes

� Trading resources in the marketplace

� Colonizing towns

� Use of spells

� Solving island quests to get rewards

� Interaction with alliances

� Chatting with players

37

CHAPTER 5. CONCEPTION

5.3 AI Model

Basic Model To develop an appropriate model for the AI the model proposed

by Ian Millington in his book Artificial Intelligence for Games[47] was taken.

However, the model did not fit completely to the requirements of the AI needed

for Grepolis. Some parts like movement, animation and physics of Millingtons

model were not relevant for the AI of Grepolis. So they could be removed from

the model. Besides that, the model was further developed to support a modular

implementation of the game features.

Figure 5.1: Developed model of the AI

Strategy and Character AI The developed model as shown in Figure 5.1

can be divided into two parts, a Strategy AI and a Character AI. This division

was needed since in Grepolis a player can have several towns under his con-

trol. Thus also an NPC controlled by the AI should be able to control several

towns. The two parts of the AI handle different areas of the game. While the

Character AI is responsible for managing tasks that concern a specific town, the

Strategy AI manages decisions that are relevant for the overall strategy of an

NPC or concern several towns. Since one Character AI is always responsible for

38

CHAPTER 5. CONCEPTION

one town, an NPC with several towns under his control will also have several

Character AIs each controlling a specific town and one Strategy AI managing

the overall strategies of the NPC (see Figure 5.2).

Figure 5.2: Simplified AI Model for an AI entity with several towns

Modular Structure As written above, the model for the AI was developed

to support a modular implementation of the features of the game. That means

that different features can be added or removed to the AI with minimal effort

and without influencing other modules. To support that, the Strategy AI and

the Character AIs each contain a main decision making class. These main classes

call all the active modules that are responsible for making decisions concerning

a specific part of the game. The Main Character Decision Maker, for example,

could call the modules to decide what buildings to upgrade, what units to train

and what technologies to research in the academy. Each module returns its

decisions to the Main Character Decision Maker. Within the Main Character

Decision Maker all the decisions from all the modules are afterwards processed

and executed.

Figure 5.3 shows an example of some modules processed by the Character AI.

Figure 5.3: Example of modules for the Character AI

39

CHAPTER 5. CONCEPTION

5.4 Conception of Decision Making

5.4.1 Evaluation of Decision Making Techniques

All the individual decision making techniques described in section 3.4 did not

fit entirely to the requirements of this project. This section will explain why it

was necessary to use several different decision making techniques and combine

them to a new way of decision making.

Decision Trees Decision Trees are a good way of structuring the process

of decision making. They can be used to implement reactive behavior straight-

forward because they provide “an efficient way of matching a series of condi-

tions”[48]. However, only using decision trees for making decisions of an AI

might not be the best idea. An NPC that has an AI that only uses decision

trees for decision making always relies on input coming from the environment

before it can come to a decision. The decisions will always be reactive and such

an NPC would never set its own goals to achieve.

State Machines State Machines are very useful in separating an AI into

different states that define different behaviors of the AI. This makes structuring

an AI much easier and reduces the complexity of a model for decision making.

Having defined states can also help in debugging an AI. If it is known what

behavior one can expect in which state, this can be easily tested. The downside

in using state machines lays in the transitions between two states. If there are

several conditions for a transition between two states, this can get unnecessarily

complex if using only state machines.

Figure 5.4: A state machine with two very similar transitions

40

CHAPTER 5. CONCEPTION

The very simple state machine diagram in Figure 5.4 shows an example of the

issues with transitions of state machines. The AI of this example has two tran-

sitions from the state Idling to the states Attacking and Fleeing. However, the

transitions have very similar conditions that process almost the same informa-

tion individually. So it would be better to have a solution that can evaluate

several conditions and can chose the next state based on that input.

Additionally, the concept of state machines did not fit completely to the re-

quirements of this project. Typically, a state machine only allows a character

to be in one state at a time. The character of the example in Figure 5.4 cannot

be simultaneously in the states Idling and Attacking because it is simply not

possible that a character does both things at a time. The states of a state ma-

chine typically define the behavior of a character. They determine what actions

he can do and how he acts. In this project, though, the state of a character

did not need to be defined that strictly. A character that is attacking a town

of another player might be in a state called “Attacking”. The gameplay of Gre-

polis still allows the player to continue doing other actions not related to the

attack, like upgrading the town or researching technologies. That means the

character might be in the state Attacking but he could also be doing other not

fight related actions at the same time.

Goal-Oriented Behavior An AI that has Goal-Oriented Behavior (GOB) is

able to define goals to achieve on its own. This gives the player the impression

that the AI handles autonomously which increases the believability of the AI.

The AI can also adapt to a player’s behavior by defining goals based in the

previous actions of a player. With GOB an NPC obtains a long term goal

existing over several iterations of decision making. But developing an AI only

with GOB is hardly imaginable. GOB only drives the AI into a specific direction.

But how should the AI come to the decision that it will pursue a specific goal?

For this another kind of decision making is necessary.

41

CHAPTER 5. CONCEPTION

5.4.2 The Decision Making Model

Combining different Decision Making Techniques

Each of the previous described decision making techniques has their advan-

tages and disadvantages. Individually they would all not fit to the requirements

needed for this project. This is why the implemented solution for decision mak-

ing in this project is a combination of all three techniques.

As mentioned before, transitions in state machines can get problematic. To

solve the issue of the example in Figure 5.4 one can combine state machines with

decision trees by replacing the transitions of the state machines with conditions

from decision trees. This is an approach also proposed by Ian Millington in his

book Artificial Intelligence for Games[48]. Figure 5.5 shows the same states and

transitions as Figure 5.4. However, now the conditions are only processed once

for both state transitions at the same time. Instead of having to check four

conditions the decision maker in Figure 5.5 only has to evaluate two conditions.

Figure 5.5: Combination of a state machine with a decision tree

Millington’s approach only takes the conditions from the decision tree model

and keeps the rest from the state machine model. However, as mentioned in

section 5.4.1, states in this project are not as strictly divided from each other as

they are in a usual state machine. That is why a slightly different approach of

combining state machines with decision trees had to be taken. Instead of using

state machines as the base model and adding features of decision trees, in this

project the opposite was done. The principle of decision trees was taken as the

base model and features of state machines were integrated into this model so

42

CHAPTER 5. CONCEPTION

that decisions can now also check the state of an NPC and actions can lead into

state changes.

Beside the known approach of combining decision trees with state machines, this

project also integrated GOB into the decision making model. By integrating

goals into the concept of decision trees the AI gets the ability to make up

individual long-term objectives to achieve. Similar to the integration of state

machines, the decisions in the decision tree can also check what goals a character

has and make decisions based on that. Additionally, actions can result in new

goals to pursue.

Figure 5.6: Combination of decision trees, state machines and goal-oriented
behavior

Figure 5.6 shows an example of a decision making process how it is used in

this project. It is visible that both, decisions and actions, integrate goals and

states in the process of making the decision if a character should attack another

town. The diamond symbol stands for decisions that need to be evaluated. To

visualize the integration of states and goals, decisions that include states are

marked dark gray, while decisions using goals are light gray and all other usual

decisions are white. Actions that lead to new goals to pursue are shown as

circles, while normal actions are shown as rectangles.

43

Chapter 6

Implementation

This chapter addresses the implementation phase of the project. Besides the

description of the implementation of the AI, used design patterns are explained.

6.1 Daemon

The need for a Daemon Grepolis needs a different kind of artificial intel-

ligence, as it is usually implemented in a game. Typically, the AI of a game is

only needed, while the player is playing the game or interacting with an NPC

controlled by the AI. For Grepolis this does not apply. The game play of Gre-

polis required an AI that is available all the time even when no player is playing

the game at that time. PHP, which was the chosen technology1, is a program-

ming language made for request-response applications. This means that the

web server will create a PHP instance when a client requests an action. After

completion of the action and return of the result, the PHP instance will be de-

stroyed. Without a request beforehand no code on the server will be executed.

This would be a problem for the AI, as this would mean that the code for the

AI can only run after a player has done a request. To solve this issue a daemon

was created that runs the code for the AI.

Forking As written in section 4.2.2, a PHP daemon enables to run instances

of PHP programs continuously on the web server without the need of a user

request. The daemon is realized using forking. One process creates, before it

1see section 4.2 and 5.1

44

CHAPTER 6. IMPLEMENTATION

dies, a copy of itself as a child process that only differs from the parent process

by the process identifier (PID). The program flow after the fork will now be

determined by the PID. The parent process will die while the child process will

start a new instance of the PHP daemon. Afterwards the child process will

create a new child process and the loop starts over again. This way an infinite

loop of PHP processes can be achieved. Listing 6.1 shows how forking can be

used to implement a daemon loop in PHP.

Listing 6.1: Implementation of a daemon loop in PHP

1 $pid = pcntl_fork ();

2 if ($pid == -1) { // Problem with forking

3 return false;

4 } elseif ($pid) { // Parent process

5 return $pid;

6 } else { // Forked child

7 $this ->daemon ->runLoop ();

8 exit (0);

9 }

Task providers Inside the daemon loop several task providers are called.

The task providers are responsible for gathering the tasks that the AI needs to

handle in each loop. After that, task handlers execute the previously gathered

tasks. Figure 6.1 visualizes this flow.

Figure 6.1: Task providers and handlers are called in the daemon loop

The most important task provider is the GameTimedZoeCallTaskProvider which

provides all the so called Timed Call Tasks that are relevant for the AI. Timed

calls are calls of methods that need to be executed at a specific point in time.

45

CHAPTER 6. IMPLEMENTATION

This way actions of the NPCs can be executed at specified times. A table in

the database is used to store the information about which method needs to be

called at which time. Figure 6.2 shows the structure of the table.

Column Name Data type Description

id (primary key) integer Unique identifier for each row in the table.
classname text Name of the class that contains the method.

methodname text Name of the method that should be called.
arguments text Parameters for the method call stored as

JSON.
execute at integer Unix timestamp of the point of execution.

priority integer Priority of the call.

Figure 6.2: Database table game timed zoe call

The GameTimedZoeCallTaskProvider gathers all tasks that are due to be called

and passes them to the GameTimedZoeCallTaskHandler. For each due task an

object of the type GameTimedZoeCall is created and passed to the method

call() of the task handler.

Listing 6.2: Execution of the timed calls

1 function call(GameTimedZoeCall $call)

2 {

3 $class_name = $call ->classname;

4 $args = json_decode($call ->arguments , true);

5 $class = new $class_name ();

6 return call_user_func_array(

7 [$class , $call ->methodname],

8 $args);

9 }

This method, shown in Listing 6.2, firstly uses the PHP function json decode(

<JSON>, <Associative>) to transform the arguments from JSON, how they

are stored in the database, to an PHP array. After that, an object of the

given class is created and lastly the PHP function call user func array(<Class

Name>, <Method Name>, <Parameters>) is used to call the given method.

46

CHAPTER 6. IMPLEMENTATION

6.2 Design Patterns

In this section some design patterns and used programming paradigms are de-

scribed related to how the project benefited from their use.

6.2.1 Object Oriented Programming

This project, as the rest of the backend code of Grepolis, was written following

the object oriented programming (OOP) paradigm. OOP is a programming

paradigm to structure complex software applications. The fundamental data

structure are objects that communicate with each other. Objects can contain

data fields, which are often called attributes, and algorithms known as methods.

Typically, in OOP objects are instances of classes that define the attributes and

methods an object has. Different objects instantiated from the same class do

not have to be identical, but they should have enough similarities that they can

be defined as one group. Therefore, classes are abstractions of objects.

OOP is based on the main features Encapsulation, Inheritance and Polymor-

phism [49].

Encapsulation In OOP the attributes and methods of objects are encapsu-

lated in the classes they are instantiated from. This leads to the advantage that

the rights to who can access the attributes and methods of an object can be

restricted. In PHP, for example, the keyword private indicates that an attribute

or method should only be accessed by the class itself. Protected attributes or

methods can be accessed by the class itself and any inherited child classes, while

public attributes and methods can be accessed by any class. Another advantage

of encapsulation is that classes can take care of consistency of their data by

themselves. By restricting the access to attributes, it is possible to, for exam-

ple, only allow two fields to be changed at the same time by providing a Setter

- Method.

Listing 6.3 shows an example of encapsulation in OOP. The attributes first name

and family name are declared as private. This means that they cannot be ac-

cessed directly from the outside of the class. The method setName is public and

thus can be called from any other class. The method setName takes two param-

eters and sets the attributes first name and family name to the corresponding

values. This way it can be secured that both variables are always set.

47

CHAPTER 6. IMPLEMENTATION

Listing 6.3: Example of encapsulation of attributes and methods

1 class Human

2 {

3 private $first_name;

4 private $family_name;

5
6 public function setName($first , $family)

7 {

8 $this ->first_name = $first;

9 $this ->family_name = $family;

10 }

11 }

Inheritance Inheritance can be used to create generalized parent classes that

inherit attributes and methods to several different other child classes. Child

classes are usually a specialization of their parent class with additional attributes

and methods. This way a relation between different classes with same attributes

can be achieved.

Figure 6.3: Example of inheritance of classes

Figure 6.3 shows an exemplary implementation of inheritance. A class Car,

for example, is a specialized child of the class Vehicle. That means that it

inherits the attributes of the Vehicle class, which are the same for every type

of vehicle. Every vehicle has, for example, a specified amount of tires and

can carry a specified amount of passengers. The class vehicle does not specify

how many tires a vehicle has or how many people a vehicle can carry, the

car, however, is a specialized type of vehicle with typically four tires and the

possibility to accommodate five passengers. Additionally, a car has doors, which

is an attribute that is not existing in all types of vehicles. Another specialization

48

CHAPTER 6. IMPLEMENTATION

of the class vehicle could be a motorbike with two tires and two passengers.

Polymorphism Inheritance in OOP also enables polymorphism. Polymor-

phism means that an object may take several different forms. Child classes, for

example, can implement one method of a parent class in different ways.

Listing 6.4: Example of polymorphism

1 abstract class Animal

2 {

3 abstract public function makeNoise ();

4 }

5

6 class Dog extends Animal

7 {

8 public function makeNoise ()

9 {

10 print_r("Wuff!");

11 }

12 }

13

14 class Cat extends Animal

15 {

16 public function makeNoise ()

17 {

18 print_r("Miau!");

19 }

20 }

Listing 6.4 shows a basic example for polymorphism. The abstract class2 Animal

has an abstract method makeNoise. The two classes Cat and Dog implement

the method on different ways.

There are several further ways how polymorphism can be achieved in OOP.

Some languages, for example, support method overloading, which means that

the signature of a method defines what implementation of the method should

be called. Another way of polymorphism is overriding of a parent method in

the child class (method overriding).

2Abstract classes cannot be instantiated directly. Only classes inheriting from abstract
classes can be instantiated.

49

CHAPTER 6. IMPLEMENTATION

6.2.2 Factory Pattern

The factory pattern is a pattern of the group of the creational patterns. When

using the factory pattern the developer calls a factory method instead of calling

the constructor of a class to create an instance of an object. This way the

problem of having to specify which exact class will be created is solved.

Listing 6.5: Example of the Factory Pattern used in this project

1 class BuildingStrategyFactory

2 {

3 public static function createBuildingStrategy ($strgy)

4 {

5 switch ($strgy) {

6 case BuildingStrategyEnum :: STRATEGY_LAND_DEFF:

7 return new DataLandDeffBuildingStrategy ();

8 case BuildingStrategyEnum :: STRATEGY_LAND_OFF:

9 return new DataLandOffBuildingStrategy ();

10 ...

11 }

12 }

13 }

Listing 6.5 shows an example of how the factor pattern was used in this project.

During the decision making process, as it is described in section 5.4, some deci-

sions rely on the defined strategy of a town. The decisions which building a town

needs to upgrade to which level, for example, are based on parameters defined

in the Data[...]BuildingStrategy classes. The decision maker gets the strategy

of a town (e.g. “land off”) as a string from the database. Afterwards the de-

cision maker calls the factory method shown in Listing 6.5 with the following

statement:

$building_strategy = BuildingsStrategyFactory ::

createBuildingStrategy($str);

Due to the factory pattern the decision maker does not need to know which

class exactly it needs to instantiate. This code is outsourced into the factory

method which will return the instantiated object of the corresponding class.

50

CHAPTER 6. IMPLEMENTATION

6.2.3 Singleton Pattern

The singleton pattern is, like the factory pattern, a creational pattern. It re-

stricts an application to only allow one instantiated object of a class. Singletons

are useful if explicitly one object of a class should be instantiated. An advan-

tage of using the singleton pattern is that it allows a detailed access control of

the instance. Since the instantiation process is encapsulated inside of the class

itself, the class has full control over how and when an object can be created.

However, the singleton pattern is also seen critically in the world of software

developers. The fact that the single instance of the class is globally reachable

and the instantiation process is invisible from the outside of the class, can make

it hard to detect the dependencies of a singleton object [50, 51].

In this project the singleton was used for the class ZoeEventHandler. It is an

intermediary class between the daemon and the task providers and should only

be instantiated once.

Listing 6.6: Example of the Singleton Pattern used in this project

1 class ZoeEventHandler

2 {

3 private static $instance;

4

5 public static function getEventHandler ()

6 {

7 if (self:: $instance === null) {

8 self:: $instance = new ZoeEventHandler;

9 }

10 return self:: $instance;

11 }

12

13 protected function __construct ()

14 {

15 $this ->config = new ZoeEventHandlerConfig ();

16 }

17

18 protected function __clone ()

19 {

20 }

21 }

51

CHAPTER 6. IMPLEMENTATION

Listing 6.6 shows how the singleton pattern was implemented for the class

ZoeEventHandler. A static class variable called $instance contains the single

instance of the class. The static method getEventHandler returns the reference

to the instance and instantiates it if it does not exist yet (lazy initialization).

The constructor and the copy constructor are declared as protected. This way

no object of this class can be instantiated from outside of the class. With the

following statement the single instance of the ZoeEventHandler can be accessed

in every part of the code:

$event_handler = ZoeEventHandler :: getEventHandler ();

6.2.4 Transactions

Transactions in the area of database management systems define a group of

read and write operations against a database. They are used to make the op-

erations against a database reliable and flawless. Transactions on databases

should always follow the ACID pattern. ACID defines the four major proper-

ties Atomicity, Consistency, Isolation and Durability that database transactions

should have [52].

Atomicity A transaction is atomic if it is executed only if no action fails. If

one action of the transaction fails, the entire transaction should fail. This

means that a transaction is executed completely but only committed at

the very end, when everything worked. Only after the commitment of the

transaction, the changes are valid. If one part of the transaction fails, a

rollback is done to undo all changes of the transaction.

Consistency Consistency refers to the fact that a transaction needs to leave

a valid state of the database behind, after the transaction is completed.

Defined rules concerning the structure and content of tables (i.e. data

types and values, primary and foreign keys) need to be checked during

operations on the database.

Isolation Isolation of transactions is important to prevent that transactions

that run concurrently result in a consistent state at the end. This is

realized by restricting read and write access to tables or rows of tables

that are currently read or written by another transaction.

Durability Durability means that the changes done by a committed transac-

tion should be stored permanently in the database. Even in the case of

52

CHAPTER 6. IMPLEMENTATION

system or hardware failure due to i.e. power loss the data should still be

available.

Transactions using Zend and PostgreSQL The Zend Framework used in

this project provides methods to implement transactions. It enables the devel-

oper to use commitment and rolling back to ensure the atomicity of a trans-

action. Furthermore, PostgreSQL allows to lock specific rows of the database

table to prevent concurrent tasks on the same entries of a table.

Listing 6.7: Transactions using the Zend Framework

1 $db ->beginTransaction ();

2 try {

3 $stmt = $db ->query("SELECT *

4 FROM game_player WHERE ID = ?

5 FOR UPDATE", [1]);

6 // "FOR UPDATE" to lock table row.

7 $player = $stmt ->fetchObject ();

8 $player ->name = "Poseidon";

9 $player ->save()

10 $db ->commit (); // Commit changes if everything worked.

11 } catch (Exception $e) {

12 $db ->rollBack (); // On failure roll back changes.

13 }

Listing 6.7 shows an example implementation of a transaction. At the beginning

in Line 1 the transaction is started. Following in the try-block a row of the table

game player is selected with the parameter “FOR UPDATE”. This sets a lock

on the selected row to signalize that this row will be changed by the following

code. This way, no other process can update this row until the lock is released.

Afterwards, the column “name” of the row is changed and the row is updated

with the “save()” method. If everything worked, the transaction is finally saved.

If an exception is thrown by the code, the transaction will be rolled back and

no changes will be applied to the table.

53

CHAPTER 6. IMPLEMENTATION

6.3 The AI

6.3.1 Implementation in the Backend

Integration of the AI in the Backend To emphasize the independence

between the AI and the remaining code of the backend, the AI was developed in

an own namespace3 Ig/Grepo/Zoe. For this project no line of the main Grepolis

backend code was changed. This way it could be secured that the development

of the AI has no influences on the rest of the game. The implemented solution

can be seen as a layer that lays above the APIs of the game. All actions that

are executed by the AI are using the APIs that are also used by calls coming

from the Frontend4.

Figure 6.4: Layers of the components of the backend of the game

Data Persistence To be able to use as much of the standard Grepolis code

as possible, the NPCs are basically handled as standard player accounts. In the

database the same entries are created for the accounts and towns of NPCs as

they are for human players. To distinguish the NPCs from the human players

a new table was created called GamePlayerZoeRelation. This table is a simple

1:1 relation to be able to differentiate NPCs from usual players. This table is

used, for example, in the task providers to be able to know which town is an

NPC.

3Namespaces can be used in PHP to encapsulate modules of a projects source code.
4see section 4.2

54

CHAPTER 6. IMPLEMENTATION

6.3.2 Implementation of Decision Making

The implementation of the created concept described in section 5.4 takes ad-

vantage of the features of object oriented programming as they are described

in section 6.2.1. An abstract class is the base class for all action and decision

nodes.

Listing 6.8: Abstract class is parent of decisions and actions

1 abstract class AbstractNode

2 {

3 public abstract function decide ();

4 }

Two classes inherit from the AbstractNode class, the classes Action and Decision.

The method decide from the AbstractNode is declared as abstract and will be

defined individually for the child classes. This is a good example of polymorphic

methods in OOP. For action nodes the decide method will return the action that

needs to be performed.

Listing 6.9: Structure of an action node

1 class Action extends AbstractNode

2 {

3 public function decide ()

4 {

5 // Return action to perform

6 }

7 }

For decision nodes the decide method runs the check which node in the decision

tree will be handled next.

Listing 6.10: Structure of a decision node

1 class Decision extends AbstractNode

2 {

3 protected $yesNode , $noNode;

4

5 public function decide ()

6 {

7 return $this ->makeDecision()->decide ();

8 }

55

CHAPTER 6. IMPLEMENTATION

9

10 public function makeDecision ()

11 {

12 if (...) { // Carry out test

13 return $yesNode;

14 } else {

15 return $noNode;

16 }

17 }

18 }

Each decision node implements additionally the makeDecision method. In this

method the check is done, which node of the decision tree should be checked

next. The variables yesNode and noNode contain the decision or action that

follows in the decision tree. A decision tree can then be referenced by its first

decision node. By calling the decide method of the first decision of a decision

tree, the whole tree will be recursively traversed and, at the end, will return the

action to perform.

Figure 6.5: Class Diagram of Decisions and Actions

56

CHAPTER 6. IMPLEMENTATION

Figure 6.5 shows the complete model of inheritance for decisions and actions. It

can be seen that decisions that incorporate goals or states into the decision mak-

ing process additionally implement either the method hasGoal or the method

isInState from the respective sub class. Similarly, actions that result in goals

or state changes have the additional methods setState or setGoal.

Column Name Datatype

id integer
player id integer
town id integer

state text

Table 6.1: Table game zoe states

Column Name Datatype

id integer
player id integer
town id integer

goal text

Table 6.2: Table game zoe desires

To persist the goals and states, they are stored in individual tables on the

database. Table 6.1 and Table 6.2 show the structure of those tables. The

columns player id and town id are foreign keys referencing to the tables game

player and game town.

6.3.3 Learning and Adaption

As described in section 3.5, an AI can really benefit from learning and adaption

in several ways. The following subsections describe how learning and adaption

were realized in this project.

6.3.3.1 Learning the Fight System

Each fighting unit in the game has weaknesses and strengths compared to the

other units and is either more effective when attacking or defending. It was

necessary that the AI gains this knowledge to be able to decide which units can

be used in which situation. To be able for the AI to understand the mechanics

of the fight system, a learning algorithm was implemented. In this project

learning was implemented to allow parameter modification. This means that

the outcome of the learning algorithm changes parameters that have an influence

on decisions made by the AI. The implemented AI uses offline learning to be

able to understand the mechanics of the fight system of Grepolis. As described

in section 3.5 the offline learning was done during the development of the AI

and not during the operation time.

The implemented solution uses statistics about occurred fights and analyzes the

result of these fights. The advantage of this method is that the algorithm could

57

CHAPTER 6. IMPLEMENTATION

be implemented without having a deep understanding of the implementation

of the fight system. An analysis could even be done without any access to the

game code itself only by gathering statistics about past fights and analyzing the

outcome of the fights.

To have enough statistics about fights a script was written that generates sev-

eral fights with different units fighting against each other. During the imple-

mentation of the script to generate fights, it was important to consider all the

dependencies that could have an effect on the outcome of a fight. The building

“wall”, for example, increases the defensive values of a town. Since the learning

should only consider the strengths and weaknesses of the pure units, all those

dependencies needed to be removed so that the results of the fights are not

falsified.

Beside the strengths of the units, the costs required to recruit units also needed

to be considered during the analysis. The unit “Chariot” for example has a

very strong attack value. However, it also costs a lot of resources to recruit.

Therefore, it was necessary to check the cost-benefit ratio of the units to find

out if the units with, for example, the highest attack value really are the best

attacking unit compared to a cheaper unit.

Unit Resource Cost per Unit Population Cost Attack Value

Chariot (200, 400, 320) 4 56
Slinger (55, 100, 40) 1 23

Available Resources (1000, 1000, 1000)
Available Population 50

Chariot Slinger
Possible Amount Possible Amount
2 (1000 / 400) 10 (1000 / 100)

Attack Value of 2 Attack Value of 10
112 (56 * 2) 230 (23 * 10)

Figure 6.6: Calculation and comparison of the cost-benefit ratio of the unit
types Chariot and Slinger

Figure 6.6 shows an example calculation of the cost-benefit ratio of the unit

types Chariot and Slinger. The Chariot has a comparatively high attack value

of 56 per unit while the Slinger has a lower value of 23. The Chariot, however,

costs much more resources to recruit than a Slinger. With a limited amount of

58

CHAPTER 6. IMPLEMENTATION

e.g. one thousand resources of each kind one can only recruit two units of the

type Chariot. On the other hand, one could recruit up to ten Slingers with the

same amount of resources. Multiplying the attack value of one unit with the

amount of units one can recruit shows that with Slingers one can obtain more

than twice as much attack power.

To consider the above, the script that generates fights for the analysis used a

fixed amount of resources and population for the unit creation and did not set

a fixed amount of units for each fight. The amount of units for each fight was

calculated using the available resources and population. This made it possible

to include the cost-benefit ratio into the calculation of strengths and weaknesses

of the units.

The statistics of the fights could later be analyzed. This way it was possible to

find out which unit is strong in defense, which is strong in offense and which

unit has an advantage towards another unit. Table 6.3 shows the best offensive

and defensive units for each attack type. A detailed result of the analysis can

be found in Appendix B.

Distance Blunt Sharp
Best in Offense Slinger Rider Hoplite
Best in Defense Swordsmen Hoplite Archer

Table 6.3: Extract of the result of learning the fight system

6.3.3.2 Adapting to a Player’s Behavior

The AI is able to adapt its behavior to the surrounding players. Using the

knowledge gained with the fight system learning described in section 6.3.3.1,

the AI is able to adjust the units that are being recruited in the barracks. If a

defensive oriented town5 of an NPC is, for example, often attacked with units

of the attacking type6 blunt, it makes sense that the AI focuses on recruiting

units that are strong in defending against this type. In this case the AI should

recruit more units of the type Hoplite.

To be able to perform this adaption, the AI gathers statistics about the different

types of units that players used to attack the town of the AI. These statistics are

evaluated and the outcome is used in the decision of what units an NPC should

recruit. The algorithm checks what types of units were used and how often were

5The adaption described in this section only relates to towns having a defensive strategy
(see section 6.3.4).

6see section 2.2

59

CHAPTER 6. IMPLEMENTATION

they used to attack the town of the NPC. If a specific type of attack was used

significantly more often than the other types, the AI will create a new goal7

for the NPC to recruit units that are strong in defending against the respective

type. This adaption is a good example for parameter modification using online

learning8, as it is done during the operation of the game.

As described in section 3.5, a difficulty with learning in game development is

the problem of over-fitting. The adaption used in this project could also suffer

from over-fitting. If the AI would make up its decisions about what units to

recruit solely based on the adaption described above, this would result in over-

fitting. Imagine a player attacking a town only with units of the type blunt.

A basic adaption for the AI could be to only recruit units of the type Hoplite,

because they are strong in defending against units of the type blunt. However,

the possibility that the same player will attack with a different type of attack

still exists. Furthermore, other players could also attack the NPC with different

types of units. If an NPC only recruits units of a specific type, he will have a

strong weakness against the other types of attacks. Therefore, for the decision

making process of which units to recruit the AI incorporates additional base

unit recruitment goals into the goals created by the adaption algorithm. This

way it can be secured that a minimal base amount of each type is available. The

AI checks in each iteration if the base amounts of each defensive type is reached

and, if not, creates a new goal to recruit units of the corresponding type.

6.3.4 Strategies

Due to the limited resources and the fact that the amount of population per

town in Grepolis is limited, it makes sense to specialize towns into e.g. defensive

and offensive towns. A town that is oriented offensive, for example, should only

recruit offensive units and should not research technologies that are irrelevant

for an offensive strategy. Defensive towns, on the other hand, should focus on

recruiting defensive units and building a town that is very strong in the defense.

Hence the characters controlled by the AI also needed to be able to pursue

different strategies with their towns.

Recruitment of units Towns can either be offensive or defensive specialized

in terms of warfare. The strategy has effects on the units a town wants to recruit

7see section 5.4
8see section 3.5

60

CHAPTER 6. IMPLEMENTATION

and on the way a town interacts with towns of opponents. An offensive town

will try to attack as many opponents as possible (considering the strength of a

town) while defensive towns try to build a strong defensive army, which is able

to support towns of allies. The parameters found using the learning algorithms

described in section 6.3.3.1 were used to define which units are important for a

specific kind of strategy. A class was created for each strategy containing the

units a town wants to recruit.

Listing 6.11: Example of a data class for a Unit Training Strategy

1 class DataLandDeffUnitTrainingStrategy extends

2 DataUnitTrainingStrategy

3 {

4 public function __construct ()

5 {

6 $this ->ground_units = [

7 GroundUnitsEnum ::SWORD => 0.45,

8 GroundUnitsEnum :: ARCHER => 0.2,

9 GroundUnitsEnum :: HOPLITE => 0.35

10];

11 }

12 ...

13 }

These classes were used to make the decision which kind of units a specific

town wants to recruit or not. As it can be seen in Listing 6.11, the classes

contain, among other things, a variable ground units that stores the units a

town wants to recruit and the relative amount of the units. During the decision

of recruiting units, it can now be checked if the amount of units a town has

relatively corresponds to the values stated in the strategy.

Using only the predefined values from the strategies would make the NPCs

very predictable. Towns following the same strategy would eventually have the

same amount of units. Therefore, the adaption described in section 6.3.3.2 was

implemented. This way the decision of recruitment of units was done considering

the base values for a strategy coming from the data class and the values from the

statistics about previous fights. For offensive towns additionally the attacking

goals were considered for the recruitment of units.9 During the decision making

for recruitment the attacking goals are checked to find out which units are needed

9For each town a player wants to attack a new goal is created in the database containing
the type of attack (sharp, blunt or distance attack).

61

CHAPTER 6. IMPLEMENTATION

to be recruited for the goals. The next paragraph will explain the attacking in

greater detail.

Attacking As mentioned before, only offensive towns have the desire to attack

other towns. Therefore, the decision tree responsible to make the decision to

create new goals to attack other players in the first step checks the strategy of a

town and only creates new goals if the strategy of the town is offensive directed

(see Figure 6.7).

Figure 6.7: Decision tree to create new goals to attack other players

Each attack is either of the type pierce, blunt or distance. During the creation

of the new goals to attack other players a type of attack is chosen and associated

with this goal. After that, during each iteration of the AI for each attacking

goal of an NPC, it could be checked if enough units for an attack are available

(see Figure 5.6).

Supporting One of the main tasks of defensive towns is supporting other

towns with units. This means that, if another allied town is being attacked, a

town with a defensive strategy can send units to this town to support it. This

is especially important for offensive towns that are not recruiting any defensive

units by themselves. Without support coming from defensive towns offensive

towns would be very easy to conquer. Therefore, each NPC checks during each

iteration of the AI if one its towns is being attacked. If a town is being attacked

and the NPC has defensive town in range10, the defensive town will send support

troops to the town that is being attacked.

10Being in range means in this context that the supporting troops can reach the city that
is being attacked before the attacking troops are arriving.

62

CHAPTER 6. IMPLEMENTATION

Construction of towns Similarly to the recruitment of units, also for the

construction of the towns, data classes were created. These classes contain

information about the maximum level a building should have and about the

technologies a town should research. During the process of making the decision

which building to upgrade, the actual levels of the buildings could be compared

with the values from the strategy. If a building did not reach the maximum level

stated in the strategy, an NPC would have the wish to upgrade that building.

Listing 6.12: Example of a data class for a Construction Strategy

1 class DataLandDeffBuildingStrategy extends

2 DataBuildingStrategy

3 {

4 public function __construct ()

5 {

6 $this ->setBuildingLevel(BuildingsEnum ::BARRACKS , 30);

7 $this ->setBuildingLevel(BuildingsEnum ::FARM , 40);

8 $this ->setBuildingLevel(BuildingsEnum ::LUMBER , 30);

9 $this ->setBuildingLevel(BuildingsEnum ::IRONER , 30);

10 $this ->setBuildingLevel(BuildingsEnum ::STORAGE , 30);

11 ...

12 $this ->setResearch(ResearchesEnum :: PHALANX);

13 $this ->setResearch(ResearchesEnum :: INSTRUCTOR);

14 ...

15 $this ->setImportantBuilding(BuildingsEnum ::WALL);

16 ...

17 }

18 }

Listing 6.12 shows an example of such a data class. Besides the maximum level

of the buildings and the researches of a town the data class can also be used

to define important buildings. Buildings marked as important will be upgraded

with a higher priority. A defensive town, for example, needs to quickly have a

strong wall, to be able defend itself. That is why for the example in Listing 6.12

the wall is set as an important building.

The construction of buildings did not rely completely on the predefined values

from the data classes. To be able to adapt to the situation of each town indi-

vidually, some decisions needed to be made dynamically for each town. A town

that has a very low value of free population needs to upgrade the farm with

a higher priority to gain more population. Another example are the resource

63

CHAPTER 6. IMPLEMENTATION

production buildings. During each decision making iteration the three resource

production buildings are checked. It is checked if the production of all three

resources is in the same range. If one building produces very few resources

compared to the others, this building is upgraded with a higher priority to keep

the resource production of all three resources on the same level. Last but not

least the building dependencies11 also needed to be considered. During each

iteration it is checked if other buildings depend on another building, so that

buildings that are the dependency of many other buildings also are upgraded

with a higher priority.

6.3.5 Daily Rhythm

Sleeping Rhythm Grepolis is a game that can be played twenty-four hours

a day. Players can act or attack other players during the full day. That means

people need to be available the whole day and night to be able to react on,

for example, incoming attacks. However, a human player will not play the

game the whole day. At least during the night, the majority of players are not

playing the game and therefore cannot react. That is why it would be an unfair

advantage if the AI would act all day and night long. Also players might question

the believability of the AI if NPCs would do actions all day long without any

breaks. To solve this problem, a daily rhythm for the AI was introduced. The

daily rhythm controls when the daemon is allowed to handle tasks and when it

should not handle tasks. For a specified amount of time each day the AI will

not act in the game. That way a sleeping rhythm can be simulated for the AI

characters. Each day for seven hours at night the daemon will not handle any

tasks.

A state called “sleeping” was introduced for the AI. The daemon checks in the

task provider classes, if the current NPC is in the state of sleeping and, if so,

the daemon will not provide any tasks to be executed (see Listing 6.13).

Listing 6.13: The task providers check the state of the NPC

1 if ($this ->state == ZoeStatesEnum :: SLEEPING) {

2 return [];

3 } else {

4 return $tasks;

5 }

11Some buildings depend on other buildings to be on a specific level, before they can be
constructed or upgraded.

64

CHAPTER 6. IMPLEMENTATION

Unpredictability It was important to make the sleeping rhythm unpredictable

for the users. Otherwise players could exploit the rhythm. If the AI would al-

ways “go to sleep” at the same time each day, players could detect this very

quickly. After knowing at which time the AI cannot react, players could always

attack the NPCs at these times. To avoid this risk, the AI does not go to sleep

at the same time each day. The implemented solution uses a random algorithm

that lets the NPC go to sleep between 22:00 and 24:00 o’clock and lets the NPC

wake up between 07:00 and 09:00 o’clock the next morning. Secondly each NPC

controlled by the AI goes to sleep at a different time. That makes it even harder

to find a pattern in the sleeping rhythm of the AI controlled characters.

6.4 Admin Tool

Grepolis provides a so called Admin Tool that can be used from members of

the community management (CM) team to manage the game worlds and the

players. Since one of the requirements was that the AI needed to be manageable

by the community management, a new section was added to the Admin Tool to

manage the AI.

Figure 6.8 shows how the tool can be used to create new NPCs. Before an NPC

can be created, a normal player account has to be created since an NPC uses

very much of the same logic as the players12. After that, the AI Tool can be

used to assign the created player account to be handled as an NPC. In Figure

6.8 the player account with the id “1” and the name “John Doe” is assigned

to be an NPC. When clicking on the “Configure AI” button, one can edit the

strategy13 of each individual town that this player has. The “Pause” option can

be used to pause the decision maker for this NPC. No actions will be executed

by the AI for this player for a character that is paused. Lastly the “Unassign”

button can be used to remove the relation between the player account and the

AI.

12see section 6.3.1
13see section 6.3.4

65

CHAPTER 6. IMPLEMENTATION

Figure 6.8: Screenshot of the Admin Tool

6.5 Quality Assurance

To assure the correct functionality of the implementation, several unit and in-

tegration tests were written. While unit tests check the correct functionality

of a single part of the implementation, integration tests are used to test the

inter-operation of different parts of the project. Unit tests usually mock14 de-

pendencies of other classes and integration tests are used to test the real behavior

of dependencies. As it is done for the rest of the backend code15, the tests were

written using the PHP library PHPUnit. To perform tests that involve changes

to database entries, Grepolis provides a test database. This database is set

up before every run of the tests and creates a mirror of the table structure of

the production database. Additionally, default entries for testing, like several

players with towns, are created during the set up.

Listing 6.14: Example of the use of the assertEquals method in a unit test

1 $task_provider = new GameTimedZoeCallTaskProvider ();

2 $tasks = $task_provider ->findDue ();

3 $this ->assertEquals($expected_amount , count($tasks));

PHPUnit provides different methods to check, for example, that a variable con-

tains an expected value, or that a condition is met. Listing 6.14 shows an extract

of a unit test that makes use of the method assertEquals to test the behavior of

the GameTimedZoeCallTaskProvider. As mentioned in section 6.3.5, this task

provider should only gather tasks for NPCs that are awake. This test can be

14A mock object is an object that simulates the behavior of another object. In unit testing
it is used to reduce the complexity and to remove dependencies to other classes.

15see section 4.2.2

66

CHAPTER 6. IMPLEMENTATION

used to check if the behavior works correctly. The assertEquals method in line

three compares the number of found tasks with an expected amount. So if, for

example, there are four tasks due, but two of them belong to an NPC that is

currently sleeping, the expected amount should be two.

Figure 6.9: Output of a failed unit test

If a test fails, PHPUnit will produce an output similar to the one in Figure

6.9. The line “Failed asserting that 2 matches expected 0.” signifies than an

assertion failed in the given test case. Several test scenarios were created an

implemented. The whole list of all tests can be found in Appendix C.

67

Chapter 7

Conclusion

This chapter concludes the project. It describes the process of evaluating the AI,

as well as summarizing the results of the project, and it finally gives an outlook

for the implemented solution.

7.1 Evaluating the AI

After completion of the implementation, an evaluation was done to analyze the

implemented solution. The AI should be evaluated in different ways to find

weaknesses of the implementation, to evaluate the robustness of the created

model for AI and to check if the solution works as desired. This process is

described in the following subsections.

7.1.1 Horizontal and vertical Robustness

To test the robustness of the AI a load test was realized. The test checks if

the AI is still working under extreme conditions. Two tests were executed to

test the vertical and horizontal robustness of the AI concerning the amount of

NPCs and cities it has to handle. To test the vertical robustness, a scenario

was created, where the AI has to handle one NPC which has a large number

of cities under his control. The average amount of cities players have under

their control is around 10-20 depending on the game stage. Several evaluation

cases were done with incremental increasing amount of towns the NPC has.

The horizontal robustness was evaluated by creating a scenario, where the AI

processes very many NPCs that each have one city to control. Similar to the

68

CHAPTER 7. CONCLUSION

Evaluation case No. of NPCs No. of
Towns per

NPC

Avg.
execution

time

Horizontal 1 1 5 0.022 s
Horizontal 2 1 10 0.036 s
Horizontal 3 1 50 0.055 s
Horizontal 4 1 100 0.131 s

Vertical 1 500 1 0.5 s
Vertical 2 1000 1 0.7 s
Vertical 3 4000 1 1.3 s
Vertical 4 6000 1 1.42 s

Mix 1 1 1 0.001 s
Mix 2 50 20 0.81 s
Mix 3 100 20 1.35 s
Mix 4 500 20 1.56 s

Table 7.1: Evaluation cases for the horizontal and vertical robustness

vertical evaluation, several scenarios were evaluated with different numbers of

NPCs. Since the average amount of active players per game world lies between

1000 and 4000, the values for the test cases are located in that range. Finally, a

third scenario was created with a mixed amount of numbers of NPCs and towns

per NPC. Each scenario ran for thirty minutes. During this time the execution

time of each cycle of the daemon loop was recorded so that an average could be

calculated afterwards.

The result of the test was that both, horizontally and vertically, no issues exist.

That means that the AI can be used to create a large amount of NPCs without

any problems. However, it has to be mentioned that the execution time of one

cycle of the daemon increases, if the AI has to run the decision makers of many

NPCs at the same time. If the AI has to handle the decision makers of one

thousand NPCs at the same time, the execution time of one cycle can get up

to more than twenty seconds. It is, however, very unlikely that all NPCs need

to make decisions at the same time. As Table 7.1 shows, the average execution

time does not increase very much with a higher amount of NPCs. Even the last

evaluation test “Mix 4” where 500 NPCs each have 20 towns, which makes a

total of 10.000 towns, has an acceptable average execution time of 1.56 seconds

per cycle1.

1The execution time may differ depending on the server that runs the AI.

69

CHAPTER 7. CONCLUSION

7.1.2 Long-Term Evaluation

To evaluate if the AI can be run over a long period of time, a long-term evalu-

ation was done. One NPC was set up with two cities under his control and the

daemon responsible for handling the AI was run for one week in a development

environment without a break. The two towns of the NPC had different strate-

gies assigned to them. One was supposed to be an offensive oriented town and

the other one was a defensive town. At the beginning of the test, the two cities

were in a basic state with only the minimum of buildings existing to start the

game.

Figure 7.1: Comparison of the cities of a defensive and offensive town of an
NPC after one week

After one week the daemon was stopped and the results of the work of the AI

could be analyzed. Fortunately, the AI ran the whole week without any issue

coming up. This shows that a long-term use of the AI is possible. As Figure

7.1 shows, after one week both cities were constructed according to the needs.

In the start phase of the game the difference between offensive and defensive

towns concerning the constructed buildings does not differ very much. But still

some differences are visible. The offensive town, for example, has the Quarry2

four levels higher than the defensive town. This is due to the fact that the

2The Quarry is the building that produces the resource stone.

70

CHAPTER 7. CONCLUSION

Stone Wood Silver
Swordsman 0 95 95

Archer 0 120 75
Slinger 100 55 40

Table 7.2: Comparison of the resources needed for the units Swordsman, Archer
and Slinger

offensive town concentrated on recruiting the unit Slingers while the defensive

town mainly recruited Swordsmen and Archers. Since one only has to spend the

resources wood and iron to recruit Swordsmen and Archers, but for Slingers one

also has to spend stones, it makes sense that the offensive town has a further

constructed Quarry, because the demand for stone is higher in that town. Table

7.2 shows the resources needed to recruit the three types of units.

One finding of the long-term run was that the NPC often had very long pe-

riods of waiting, where nothing was possible to do. If the NPC has a lack of

resources, it might be possible that he cannot do anything and has to wait,

until he has gathered enough resources to continue upgrading the buildings or

recruiting units. Of course, also human players are in the same situation and

have to manage the use of their resources carefully. However, the players can use

game features that are not implemented in the current AI to obtain additional

resources. Features like Farming Villages3 or Island Quests4 can be used by the

players to shorten the waiting time.

7.1.3 Simulation of Live Worlds

Since one of the requirements was to be able to use the AI to simulate Live

Worlds in the development environment, one part of the evaluation was to find

out if the AI meets this expectation. Therefore, an evaluation was done that

should compare the behavior of a server populated with several NPCs and the

behavior of a live world. The actions taken by players on a live world (EN92)

were logged over a time frame of one day. Simultaneously in a development

environment a scenario was set up that was similar to the conditions of the live

world concerning game configurations (e.g. the speed of the world). The chosen

live world had an active user base of around 4100 players per day. Therefore,

the development world was also set up with 4100 NPCs. The actions taken by

3Farming Villages are villages on the islands that can be raided to gather resources.
4Island Quests are tasks a player has to solve to get a reward like, for example, resources.

71

CHAPTER 7. CONCLUSION

the NPCs were also logged. Afterwards the results of both statistics could be

compared.

Figure 7.2: Comparison of actions on a live world versus a simulated live world

Figure 7.2 shows that the NPCs are able to produce a significant amount of

actions. However, it cannot completely achieve the amount of actions of a live

world. This could be caused due to the fact explained in section 7.1.2. The NPCs

cannot use all the features like human players to obtain resources. Therefore,

they have a longer waiting period between their actions. Additionally, with the

current solution it is not possible to simulate the dynamics happening on a live

world between the players. If, for example, two rivaling alliances clash with

each other, this can result in a massive increase of attacks and unit orders for a

specific time.

Another issue found during the evaluation was that no HTTP requests will be

send to the servers due to the way the AI is implemented. Usually each action

taken by a user results in an HTTP request sent to one of the web servers. While

the web servers of the chosen live world had to handle more than 2.5 million

requests in the twenty-four hours, the simulated live world had to handle no

requests at all. Since the AI is integrated directly into the backend, no requests

are needed for the actions taken by the NPCs. Thus, the simulation cannot be

used to simulate the behavior of many requests coming to the web servers.

7.1.4 Individuality of Decisions

An evaluation was done to check the individuality of decisions made by the

NPCs. Two NPCs in exactly the same situation should optimally behave dif-

72

CHAPTER 7. CONCLUSION

ferently, if there are different possibilities of what to do. This is important to

increase the believability of the AI from the player’s perspective. To check how

individual the decision making process is, a scenario was created, where two

NPCs are in exactly the same situation. They each have one city with buildings

upgraded to a specific level, they have the same amount of units in the barracks

and they have the same opponents on their island. The scenario was run for

one hour and, after that, the resulting actions of the two NPCs were compared.

NPC 1 NPC 2
1 Research Technology

Hoplites
Train Units

2 Slinger
2 Upgrade Building

Silver mine
Research Technology

Hoplites
3 Train Units

5 Hoplites
Upgrade Building

Barracks
4 Upgrade Building

Marketplace
Train Units
5 Hoplites

5 Train Units
6 Slingers

Attack Town 22

6 Attack Town 13 Upgrade Building
Silver mine

7 Upgrade Building
Cave

Table 7.3: Sequence of actions performed by two NPCs in the same situation

As Table 7.3 shows, the two NPCs performed different actions in the scenario.

Although some actions, like researching the technology Hoplites, training units

or upgrading the Silver mine, were the same, each NPC also performed actions,

that the other NPC did not perform. The fact that two NPCs in exactly the

same initial situation behave differently makes it hard for the players to identify

a pattern in the decisions made by the AI. This can increase the believability of

the AI, since it gives each NPC more individuality.

7.2 Results

Implemented Features The implemented solution meets the requirements

specified at the beginning of the project. The AI can be used to create NPCs in

the game. The NPCs controlled by the AI are able to perform all essential game

features. NPCs can construct cities, including researching of technologies and

73

CHAPTER 7. CONCLUSION

upgrading of buildings, based on predefined static parameters combined with dy-

namically changing parameters depending on the game situation. Furthermore,

the NPCs can recruit units based on a predefined strategy that incorporates the

current situation of the character and NPCs are able to attack players in the

proximity. Lastly, the NPCs are able to cooperate between their owned cities

by sending supporting troops.

Usage of the AI The AI can be used as an in-game feature by placing an

NPC on an island inhabited by players. The NPC will independently construct

its town and attack the human players or defend its city based on the chosen

strategy. Players can ally to defeat the NPC together or they could even ally

with the NPC to protect him from attacks from other players.

Secondly, the AI can be used to simulate some of the real conditions of the live

servers. Although the usage of the AI will not produce any HTTP requests to

the web server, like a normal player would do5, the actions performed by the AI

will produce load to the database servers and also to the daemons of the game.

Such a simulation could help the system integration team to discover bottle

necks of the server architecture and could also help the game development team

to resolve bugs that only occur on live servers.

Finally, the AI could be used to perform so called A/B testing. One could set

up different worlds with different game configuration settings, like the speed

of the world, or the base amount of resources being produced and let the AI

run several NPCs on each world. By analyzing the progress of the NPCs on

the different worlds one could find out what consequences the different settings

have.

AI Model The way the AI was implemented allows an easy further develop-

ment. Since the AI uses a modular model6, new game features can be added

without the need to touch the existing logic. A new module only needs to be

included either in the CharacterDecisionMaker or the StrategyDecisionMaker.

Furthermore, single modules can be deactivated to change the behavior of the

AI. If, for example, the decision is made to allow cheating for the AI7 so that

the AI does not need to construct its town, the module responsible for the

construction of a town can simply be deactivated.

5see section 7.1.3
6see section 5.3
7see section 3.3

74

CHAPTER 7. CONCLUSION

Decision Making The combination of the three decision making techniques

decision trees, state machines and goal-oriented behavior provides an easy to

understand solution that autonomously produces decisions depending on the

current situation of a character. Learning and adaption is implemented to in-

crease the individuality of each NPC. The evaluation described in section 7.1

shows that the decisions of different NPCs in the same situation differ. This

makes it harder for players to identify a pattern in the actions of the AI and

will help to increase its believability.

7.3 Limitations

Competitiveness The game features that the NPCs are able to use are

restricted to the essential game features. Features like Farming Villages or usage

of gods are not implemented. Many game features that are not implemented

help the players to gather extra resources. As section 7.1.2 shows, the lack

of resources is the main problem of the AI. While human players can obtain

extra resources by trading, or interacting with Farming Villages, the NPCs can

only wait until the resources are produced in the resource production buildings.

Therefore, the human players have a great advantage and can progress faster in

the game compared to the NPCs. Secondly, as long as the NPCs are not able to

conquer the cities of a player, the NPCs are not able to defeat human players.

The question, if it is desired that the NPCs are able to defeat a player needs to

be answered individually.

Strategies of Towns The strategies that an NPC uses to specialize his town8

need to be set manually for each town in the Admin Tool. It would be better if

the NPCs are able to select the desired strategy of a town by himself depending

on the current situation of the game. This can make it easier for the NPC to

adapt to a changing situation in the game.

Collaboration of Decision Makers As described in section 5.3 the different

modules of the decision making process return their results to either the Charac-

terDecisionMaker or the StrategyDecisionMaker. In these main decision makers

all the actions that an NPC wants to perform are gathered. However, usually

not all the desired actions can be performed due to lack of resources or units.

8see section 6.3.4

75

CHAPTER 7. CONCLUSION

Therefore, a decision needs to be made what actions should be performed in the

current situation. In the implementation of this project the decision what ac-

tions to perform is simply done randomly. All actions are shuffled and executed

in a random order until all resources or available units are used. The randomness

ensures that different NPCs in exactly the same situation will not perform the

same actions and also makes sure that all different types of actions are executed

with the same probability. Since each iteration is independent from the previous

iteration, the probability for each action to be performed is always defined by

the formula for the discrete uniform distribution[53] P(Action) = 1
N , where N is

equal to the number of actions to be performed. However, using randomness

causes that a decision that might be more important in a specific situation is

not performed due to lack of, for instance, resources. An improvement would

be to incorporate the current situation of the NPC into the evaluation of the

actions to be performed. This way important actions could be executed with a

higher prioritization, before other actions, that might be less important in the

current situation, are performed.

7.4 Outlook

The result of the project can be used to create NPCs in the game Grepolis.

However, there is still room to improve the solution and to further develop it.

Implementing more Game Features Though the project can be seen

as a success, it still can be further developed to improve the solution. As

described in section 7.2 the NPCs are able to perform all essential game features.

Nevertheless, there are still some game features that the NPCs cannot perform.

One major feature that the NPCs would need to be able to defeat human players

is the ability to conquer a player’s town. Additionally, features like interacting

with Farming Villages or the usage of gods could be implemented to make the

NPCs more competitive. The ability to chat with human players could also be

implemented as an additional feature.

Dynamic Selection of Strategies In the current implementation the strate-

gies that define the behavior of a town of an NPC need to be set manually in the

Admin Tool. To make the AI more autonomous, it would be a good idea to let

the NPC choose the strategy for his towns by himself. This way the NPC could

select the right strategy for each town depending on the current situation. Also

76

CHAPTER 7. CONCLUSION

changing the strategy of a town dynamically could be implemented to allow the

NPC to adapt to different game situations.

Improve Admin Tool The implemented admin tool described in section 6.4

could also be improved. By adding an overview of the goals a character currently

has, or by visualizing the state of a character the community managers could

get a better overview about the current situation of an NPC.

Improve Learning and Adaption The AI could be improved by adding

more learning and increasing the level of adaption. The AI could adapt more to

its current situation by evaluation who attacked an NPC and how often. This

way the NPCs could identify aggressive players that might be a threat to the

NPC and try to concentrate on attacking them. Additionally, the decision trees

that were created manually could be replaced with decision trees created with

a learning algorithm like ID3[27]. To be able to use ID3 an analysis would be

needed beforehand to gather observations and actions of specific game situa-

tions. Learned decision trees might help to let the decisions of the NPCs be

closer to the decisions of a human player in a similar situation.

Integrate AI into other Game Features The AI, as a single module of

Grepolis, could be integrated in other modules of the game. It could be used, for

example, in game events to make them more complex. An event, where players

have to ally against an AI controlled NPC, could be implemented to increase

the activity of the players. Another possibility would be to use the AI as a

“New-Player-Protection”. NPCs could be placed on islands, where new players

start the game and help by supporting them with troops or resources to make

the start phase of the game easier.

Separate AI from Backend To be able to have a real simulation of a human

player, it would be needed to separate the AI completely from the backend code.

If the AI is located on a different server than the backend of Grepolis, the NPCs

need to perform standard HTTP requests, like human players do, to perform

actions in the game. This way all modules of the Grepolis backend would be

integrated in a simulation of a live world with NPCs.

Reuse of the AI Model The results show that the developed model was

successful. The model for the AI and for the decision making is a functional

77

CHAPTER 7. CONCLUSION

solution that is not restricted to Grepolis. Therefore, it could also be reused

and applied to other game development projects with a similar game play as

Grepolis. It is a model that can be applied to different projects where decision

making is needed.

78

Bibliography

[1] InnoGames. Innogames: Fast facts, 03 2016. https://corporate.

innogames.com/en/press/fast-facts.html (Accessed on 18.03.2016).

[2] InnoGames. Innogames: History, 2016. https://corporate.innogames.

com/en/press/history.html (Accessed on 18.03.2016).

[3] InnoGames. Buildings portal, 13 2013. https://wiki.en.grepolis.com/

wiki/Buildings_Portal (Accessed on 16.06.2016).

[4] K. Schwaber and J. Sutherland. The Scrum Guide - The Definitive Guide

to Scrum: The Rules of the Game. Scrum.Org and Scrum Inc, 2013.

[5] H. Kniberg and M. Skarin. Kanban and Scrum - Making the Most of Both.

InfoQ.com, 2009.

[6] Trello. Trello, 2016. https://trello.com/ (Accessed on 22.03.2016).

[7] D. Leffingwell. Levels of stakeholder involvement. In Agile Software Re-

quirements: Lean Requirements Practices for Teams, Programs, and the

Enterprise, page 121. Addison-Wesley Professional, 2010.

[8] Corinne N Johnson. The benefits of pdca. Quality Progress, 35(5):120,

2002.

[9] Git. git –distributed-even-if-your-workflow-isnt, 2016. https://git-scm.

com/ (Accessed on 19.03.2016).

[10] S. Chacon and B. Straub. Chapter 3 - git branching. In Pro git - second

edition, page 43. Apress, 2014.

[11] M. Buckland. Introduction. In Programming Game AI by Example, page

xix. Wordware Pub Co, 2005.

79

https://corporate.innogames.com/en/press/fast-facts.html
https://corporate.innogames.com/en/press/fast-facts.html
https://corporate.innogames.com/en/press/history.html
https://corporate.innogames.com/en/press/history.html
https://wiki.en.grepolis.com/wiki/Buildings_Portal
https://wiki.en.grepolis.com/wiki/Buildings_Portal
https://trello.com/
https://git-scm.com/
https://git-scm.com/

BIBLIOGRAPHY

[12] K. Dill. What is game ai? In S. Rabin, editor, Game AI Pro, page 8. CRC

Press, 2013.

[13] Alexander Nareyek. Ai in computer games. Queue, 1(10):58–65, February

2004.

[14] I. Millington. Game ai. In Artificial Intelligence for Games, pages 21–23.

Morgan Kaufmann Publishers, 2006.

[15] Principles behind the agile manifesto. http://agilemanifesto.org/

principles.html (Accessed on 27.04.2016).

[16] B. Scott. The illusion of intelligence. In AI Game Programming Wisdom,

pages 16–20. Charles River Media, 2002.

[17] Games Workshop Limited. Warhammer 40,000: Dawn of war iii. https:

//www.dawnofwar.com/ (Accessed on 19.06.2016).

[18] Kotaku. The three (or more, or less) laws of

gaming ai, 05 2009. http://kotaku.com/5271733/

the-three-or-more-or-less-laws-of-gaming-ai (Accessed on

20.05.2016).

[19] Take-Two Interactive Software, Inc. Sid meiers civilization. http://

franchise.civilization.com/en/home/ (Accessed on 19.05.2016).

[20] Take-Two Interactive Software, Inc. 2k games. https://www.2k.com/

(Accessed on 19.06.2016).

[21] TVTropes. The computer is a cheating bastard. http://tvtropes.org/

pmwiki/pmwiki.php/Main/TheComputerIsACheatingBastard (Accessed

on 20.05.2016).

[22] I. Millington. Overview of decision making. In Artificial Intelligence for

Games, pages 301–303. Morgan Kaufmann Publishers, 2006.

[23] R. Davis and J. J. King. The origin of rule-based systems in ai. In B. G.

Buchanan and Edward H. Shortliffe, editors, Rule-Based Expert Systems,

pages 20–25. Addison-Wesley Publishing Co., Inc., 1984.

[24] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Trees. In

Data Structures and Algorithms, pages 91–96. 2001. http:

80

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
https://www.dawnofwar.com/
https://www.dawnofwar.com/
http://kotaku.com/5271733/the-three-or-more-or-less-laws-of-gaming-ai
http://kotaku.com/5271733/the-three-or-more-or-less-laws-of-gaming-ai
http://franchise.civilization.com/en/home/
http://franchise.civilization.com/en/home/
https://www.2k.com/
http://tvtropes.org/pmwiki/pmwiki.php/Main/TheComputerIsACheatingBastard
http://tvtropes.org/pmwiki/pmwiki.php/Main/TheComputerIsACheatingBastard
http://dlia.ir/Scientific/e_book/Science/Mathematics/QA_75.5_76.95_Electronic_Computers_Computer_Science_/008394.pdf
http://dlia.ir/Scientific/e_book/Science/Mathematics/QA_75.5_76.95_Electronic_Computers_Computer_Science_/008394.pdf
http://dlia.ir/Scientific/e_book/Science/Mathematics/QA_75.5_76.95_Electronic_Computers_Computer_Science_/008394.pdf

BIBLIOGRAPHY

//dlia.ir/Scientific/e_book/Science/Mathematics/QA_75.5_76.

95_Electronic_Computers_Computer_Science_/008394.pdf (Accessed

on 01.07.2016).

[25] M. Sipser. Finite automata. In introduction to the theory of computation,

pages 31–40. Thomson Course Technology, Boston, Massachusetts, USA,

2006.

[26] J. Orkin. Applying goal-oriented action planning to games. Mono-

lith Productions. http://alumni.media.mit.edu/~jorkin/GOAP_draft_

AIWisdom2_2003.pdf (Accessed on 11.07.2016).

[27] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,

1986.

[28] I. Millington. Learning. In Artificial Intelligence for Games, page 564.

Morgan Kaufmann Publishers, 2006.

[29] I. Millington. Over-learning. In Artificial Intelligence for Games, page 566.

Morgan Kaufmann Publishers, 2006.

[30] N. Palmer. Machine learning in games development. http://ai-depot.

com/GameAI/Learning.html (Accessed on 21.07.2016).

[31] I. Hickson, R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, E. O’Connor,

and S. Pfeiffer. Html 5 - a vocabulary and associated apis for html

and xhtml, 10 2014. https://www.w3.org/TR/html5/ (Accessed on

27.06.2016).

[32] Khronos WebGL Working Group. Webgl public wiki, 04 2015. https:

//www.khronos.org/webgl/wiki/Main_Page (Accessed on 27.06.2016).

[33] Unity Technologies. Create and connect with unity, 2016. http://

unity3d.com/ (Accessed on 27.06.2016).

[34] Adobe Systems Incorporated. Adobe air, 2016. http://www.adobe.com/

products/air.html (Accessed on 27.06.2016).

[35] The jQuery Foundation. jquery, 2016. https://jquery.com/ (Accessed

on 15.08.2016).

[36] J. Ashkenas. Javascript’s utility belt, 07 2016. https://github.com/

jashkenas/underscore (Accessed on 15.08.2016).

81

http://dlia.ir/Scientific/e_book/Science/Mathematics/QA_75.5_76.95_Electronic_Computers_Computer_Science_/008394.pdf
http://dlia.ir/Scientific/e_book/Science/Mathematics/QA_75.5_76.95_Electronic_Computers_Computer_Science_/008394.pdf
http://dlia.ir/Scientific/e_book/Science/Mathematics/QA_75.5_76.95_Electronic_Computers_Computer_Science_/008394.pdf
http://dlia.ir/Scientific/e_book/Science/Mathematics/QA_75.5_76.95_Electronic_Computers_Computer_Science_/008394.pdf
http://alumni.media.mit.edu/~jorkin/GOAP_draft_AIWisdom2_2003.pdf
http://alumni.media.mit.edu/~jorkin/GOAP_draft_AIWisdom2_2003.pdf
http://ai-depot.com/GameAI/Learning.html
http://ai-depot.com/GameAI/Learning.html
https://www.w3.org/TR/html5/
https://www.khronos.org/webgl/wiki/Main_Page
https://www.khronos.org/webgl/wiki/Main_Page
http://unity3d.com/
http://unity3d.com/
http://www.adobe.com/products/air.html
http://www.adobe.com/products/air.html
https://jquery.com/
https://github.com/jashkenas/underscore
https://github.com/jashkenas/underscore

BIBLIOGRAPHY

[37] Zend. Zend framework, 2016. https://framework.zend.com/ (Accessed

on 30.06.2016).

[38] N. Adermann and Jordi Boggiano. Composer - dependency manager for

php, 2016. https://getcomposer.org/ (Accessed on 30.06.2016).

[39] S. Bergmann. Welcome to phpunit, 2016. https://phpunit.de/ (Accessed

on 30.06.2016).

[40] PostgreSQL Global Development Group. Postgresql, 2016. https://www.

postgresql.org/ (Accessed on 27.06.2016).

[41] NGINX Inc. nginx, 2016. http://nginx.org/ (Accessed on 30.06.2016).

[42] B. Wil. Github repository, 03 2016. https://github.com/BrandonWill/

GrepolisBot (Accessed on 30.03.2016).

[43] M. Gessler. Interessengruppen/interessierte parteien. In Kompe-

tenzbasiertes Projektmanagement, page 71. Deutsche Gesellschaft fuer Pro-

jektmanagement, 2011.

[44] D. Leffingwell. Goodbye iron triangle. In Agile Software Requirements:

Lean Requirements Practices for Teams, Programs, and the Enterprise,

pages 16–17. Addison-Wesley Professional, 2010.

[45] The PHP Group. Php: What is php? - manual. http://php.net/manual/

en/intro-whatis.php (Accessed on 22.04.2016).

[46] What language do you use to create your ai programs and why? KI -

Kuenstliche Intelligenz, 26(1):99–106, 2011.

[47] I. Millington. My model of game ai. In Artificial Intelligence for Games,

pages 9–11. Morgan Kaufmann Publishers, 2006.

[48] I. Millington. State machines. In Artificial Intelligence for Games, page

341. Morgan Kaufmann Publishers, 2006.

[49] B. Lahres and G. Rayman. Die basis der objektorientierung. In Objektori-

entierte Programmierung. Rheinwerk Computing, 2009.

[50] M. Hevery. Root cause of singletons. 08 2008. http://misko.hevery.com/

2008/08/25/root-cause-of-singletons/ (Accessed on 04.08.2016).

82

https://framework.zend.com/
https://getcomposer.org/
https://phpunit.de/
https://www.postgresql.org/
https://www.postgresql.org/
http://nginx.org/
https://github.com/BrandonWill/GrepolisBot
https://github.com/BrandonWill/GrepolisBot
http://php.net/manual/en/intro-whatis.php
http://php.net/manual/en/intro-whatis.php
http://misko.hevery.com/2008/08/25/root-cause-of-singletons/
http://misko.hevery.com/2008/08/25/root-cause-of-singletons/

BIBLIOGRAPHY

[51] M. Hevery. Singletons are pathological liars. 08 2008. http://misko.

hevery.com/2008/08/17/singletons-are-pathological-liars/ (Ac-

cessed on 04.08.2016).

[52] T. Kyte and D. Kuhn. Transactions. In Oracle Database Transactions and

Looking Revealed, pages 79–109. Apress Media, 2014.

[53] H.-O. Georgii. Diskrete gleichverteilung. In Stochastik: Einführung in die

Wahrscheinlichkeitstheorie und Statistik, pages 29–30. Walter de Gruyter

GmbH & Co KG, 2015.

83

http://misko.hevery.com/2008/08/17/singletons-are-pathological-liars/
http://misko.hevery.com/2008/08/17/singletons-are-pathological-liars/

Nomenclature

AI Artificial Intelligence

API Application Programming Interface

CIP Continuous Improvement Process

CM Community Management

CSS Cascading Style Sheets

DAU Daily Active Users

DHTML Dynamic HTML

F2P Free-to-Play

GOB Goal-Oriented Behavior

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

NPC Non-Player Character

OOP Object Oriented Programming

PID Process Identifier

84

List of Figures

1.1 Percentage of login activity in weeks after registration 2

2.1 Screenshot of the game showing an island with several towns . . 5

2.2 Screenshot of the game showing an advanced town 6

2.3 Screenshot of the game showing the unit swordsman in the barracks 7

2.4 The building queue as a standard (1) and premium (2) user . . . 8

2.5 Example of a Kanban board . 9

2.6 Plan-Do-Check-Act (PDCA) Cycle 11

3.1 Schema of a general decision making process (adapted from [22]) 17

3.2 Example of a rule-based system 18

3.3 Example of a decision tree . 19

3.4 Example of a state machine for a game AI 20

4.1 Overview of the call flow for an API 26

4.2 Scheme of the Server Architecture of a Grepolis market 28

4.3 Screenshot of the tool GrepolisBot 29

4.4 Stakeholder Matrix . 30

4.5 Flipping of the iron triangle with agile development (adapted

from [44]) . 31

5.1 Developed model of the AI . 38

5.2 Simplified AI Model for an AI entity with several towns 39

5.3 Example of modules for the Character AI 39

5.4 A state machine with two very similar transitions 40

5.5 Combination of a state machine with a decision tree 42

5.6 Combination of decision trees, state machines and goal-oriented

behavior . 43

85

LIST OF FIGURES

6.1 Task providers and handlers are called in the daemon loop 45

6.2 Database table game timed zoe call 46

6.3 Example of inheritance of classes 48

6.4 Layers of the components of the backend of the game 54

6.5 Class Diagram of Decisions and Actions 56

6.6 Calculation and comparison of the cost-benefit ratio of the unit

types Chariot and Slinger . 58

6.7 Decision tree to create new goals to attack other players 62

6.8 Screenshot of the Admin Tool . 66

6.9 Output of a failed unit test . 67

7.1 Comparison of the cities of a defensive and offensive town of an

NPC after one week . 70

7.2 Comparison of actions on a live world versus a simulated live world 72

86

Listings

4.1 Example of the parameters of an API call from frontend to backend 27

6.1 Implementation of a daemon loop in PHP 45

6.2 Execution of the timed calls . 46

6.3 Example of encapsulation of attributes and methods 48

6.4 Example of polymorphism . 49

6.5 Example of the Factory Pattern used in this project 50

6.6 Example of the Singleton Pattern used in this project 51

6.7 Transactions using the Zend Framework 53

6.8 Abstract class is parent of decisions and actions 55

6.9 Structure of an action node . 55

6.10 Structure of a decision node . 55

6.11 Example of a data class for a Unit Training Strategy 61

6.12 Example of a data class for a Construction Strategy 63

6.13 The task providers check the state of the NPC 64

6.14 Example of the use of the assertEquals method in a unit test . . 66

87

List of Tables

4.1 Milestones . 34

6.1 Table game zoe states . 57

6.2 Table game zoe desires . 57

6.3 Extract of the result of learning the fight system 59

7.1 Evaluation cases for the horizontal and vertical robustness 69

7.2 Comparison of the resources needed for the units Swordsman,

Archer and Slinger . 71

7.3 Sequence of actions performed by two NPCs in the same situation 73

88

Appendix A

Requirements Analysis

Document

Description Appendix A contains the requirement analysis document, which

was created after the requirements analysis, to document the found re-

quirements.

a

Requirements Analysis
Document

Version 1.0
30.03.2016
Created by Lars Engel

Table of contents
1 Introduction..

1.1 Purpose of the System..

1.2 Core System Functionalities..

1.3 Objectives and Success Criteria of the Project...

1.4 Definitions, Acronyms and Abbreviations..

2 Current System...

3 Requirements..

3.1 Main Story...

3.2 Functional Requirements...

3.3 Nonfunctional Requirements..

Availability...

Implementation..

Integrity..

Performance...

Reliability..

Supportability..

Usability..

3.4 Essential Requirements..

3.4.1 Essential Requirements..

3.4.2 Additional Requirements...

4 Change History...

5 References..

1

1 Introduction
1.1 Purpose of the System

To improve the long term play value of Grepolis and to be able to create new and
more complex events an intelligent nonplayer character (NPC) has to be
implemented.

1.2 Core System Functionalities
The implementation must be able to:

 Build one or several towns independently.
 Do researches in the academy independently.
 Attack other players independently.
 Defend itself independently.
 Allow a management of the nonplayer characters via the admin tool.

The solution should furthermore be able to be used to simulate human players in
a development environment to be able to

 Perform load tests
 Simulate live worlds
 Find bottle necks in the server architecture.

1.3 Objectives and Success Criteria of the Project
The project can be seen as successful if the core system functionalities stated in
1.2 are implemented. Since the project is developed in an agile environment the
requirements stated in this document may change at any point during the
project.

1

1.4 Definitions, Acronyms and Abbreviations
Admin Tool The tool used by CMs to manage game

functionalities.
CM (Community Manager) A person managing the community of

players
Independently In this context the word “independently”

means that an NPC is making his own
decisions without the need to tell him
what to do.

NPC (nonplayer character) A nonhuman entity behaving like a
person playing the game

Player A person playing Grepolis
Product Owner A person who is responsible for the game.
System Integrator A person who is responsible for managing

the game servers and the other
components that run the game.

The game The online multiplayer game Grepolis

2

2 Current System
There is no current system in place right now that acts as an NPC in the game
Grepolis.

3 Requirements
3.1 Main Story

As a player I want to be able to interact with a nonplayer character so that I have
a better game play experience. (See page 6 for splitting up main story into player
relevant sub stories)

3.2 Functional Requirements
FP1: As a player I want the NPC to do researches in the academy so that I have a
worthy enemy.
FP2: As a player I want the NPC to upgrade his towns buildings so that I have a
worthy enemy.
FP3: As a player I want the NPC to defend itself on an upcoming attack so that I
have a worthy enemy.
FP4: As a player I want the NPC to attack other players so that I have a better
game player experience.
FP5: As a player I want the NPC to recruit units so that I have a worthy enemy.
FP6: As a player I want the NPC to interact with farming villages so that I have a
worthy enemy.
FP7: As a player I want the NPC to use heroes so that I have a worthy enemy.
FP8: As a player I want the NPC to trade resources so that I have a worthy
enemy.
FP9: As a player I want the NPC to colonize towns so that I have a worthy
enemy.
FP10: As a player I want the NPC to use spells so that I have a worthy enemy.
FP11: As a player I want the NPC to solve island quests so that I have a worthy
enemy.
FCM1: As a community manager I want to create new NPCs via the admin tool.

3

FCM2: As a community manager I want to be able to manage existing NPCs via
the admin tool.
FSI: As a system integrator I want to have a simulation of a human player so
that I am able to do server load tests.

3.3 Nonfunctional Requirements
Availability

NFA1: As a player I want the NPC not to be available all the time so that I have a
better game play experience.

Implementation
NFI1: As a developer I want to be able to work on the system without spending
much time in working into the used technology so that I can quickly understand
the system.

Integrity
NFIT1: As a product owner I don’t want that the system can be misused to cheat
in the game.

Performance
NFP1: As a player I don’t want that the performance of the game is worsened
with this new feature so that I can play the game as before.

Reliability
NFR1: As a product owner I want the system to be tested during the
implementation and integration.

Supportability
NFS1: As a system integrator I want to be able to run the system on the current
server setup so that minimal extra configuration is needed.

Usability
NFU1: As a player I want to be able to distinguish NPCs and other players.

4

3.4 Essential Requirements
Since not all the requirements mentioned above can be implemented during the
project due to limited time and resources, the functional requirements were
divided into essential and additional abilities to have a better understanding
what is important to be implemented first.

3.4.1 Essential Requirements
 FP1
 FP2
 FP3
 FP4
 FP5
 FCM1
 FCM2
 FSI

3.4.2 Additional Requirements
 FP6:
 FP7
 FP8
 FP9:
 FP10
 FP11

5

6

4 Change History
Author Date Reason
Lars Engel 30.03.2016 Creation of Document

5 References
 RAD adapted from

http://www.cs.fsu.edu/~lacher/courses/COP3331/rad.html

7

Appendix B

Learning the Fight System

Description Appendix B contains some detailed statistics of the outcome of

the learning of the fight system. This statistics were used to find out which

unit is strong in defense, which unit is strong in offense, and which unit is

strong against which type of attack.

k

1 Statistics about Fights overall
R

id
er

S
lin

ge
r

H
op

lit
e

C
at

ap
ul

t

C
ha

rio
t

Z
yk

lo
p

F
ur

y

A
rc

he
r

M
ed

us
a

M
an

tic
or

e

G
od

se
nt

M
in

ot
au

r

G
rif

fin

C
en

ta
ur

C
al

yd
on

ia
n

B
oa

r

H
ar

py

P
eg

as
us

C
er

be
ru

s

S
w

or
ds

m
en

0

2

4

6

8

10

12

14

16

18

20

Offense

Defense

Wins Offense Wins Defense
Rider 16 11
Slinger 16 12
Hoplite 15 18
Catapult 13 5
Chariot 13 17
Zyklop 13 2
Fury 12 0
Archer 12 18
Medusa 11 10
Manticore 10 0
Godsent 9 5
Minotaur 9 7
Griffin 9 0
Centaur 8 8
Calydonian Bo 7 10
Harpy 7 2
Pegasus 6 1
Cerberus 5 11
Swordsmen 4 18

2 Statistics about Types of Attack

Type of Attack Worst Fight against
Rider Blunt Hoplite
Slinger Distance Swordsmen
Hoplite Sharp Archer
Catapult Distance Swordsmen
Chariot Sharp Archer
Zyklop Distance Swordsmen
Fury Distance Swordsmen
Archer Distance Swordsmen
Medusa Sharp Archer
Manticore Sharp Archer
Godsent Blunt Hoplite
Minotaur Blunt Hoplite
Griffin Blunt Hoplite
Centaur Distance Swordsmen
Calydonian Boar Sharp Archer
Harpy Blunt Hoplite
Pegasus Sharp Archer
Cerberus Blunt Hoplite
Swordsmen Blunt Hoplite

3 CostBenefit Ratios
Defense per farm space:

 Swordsman: 17.3333333

 Archer: 15

 Hoplite: 12.3333333

 Chariot: 12.3333333

 Slingers: 5.66666667

 Rider: 4.77777778

 Catapult: 2

Attack per farm space:

 Slingers: 23

 Rider: 20

 Hoplite: 16

 Chariot: 14

 Archer: 8

 Catapult: 6.66666667

 Swordsman: 5

Defense per resource:

 Swordsman: 0.288888889

 Archer: 0.230769231

 Hoplite: 0.164444444

 Chariot: 0.154166667

 Slingers: 0.0871794872

 Rider: 0.0597222222

 Catapult: 0.0428571429

Attack per resource:

 Slingers: 0.117948718

 Rider: 0.0833333333

 Hoplite: 0.0711111111

 Chariot: 0.0583333333

 Catapult: 0.0476190476

 Archer: 0.041025641

 Swordsman: 0.0277777778

Attack / Defense ratio:

 Rider: 4.18604651

 Slingers: 4.05882353

 Catapult: 3.33333333

 Hoplite: 1.2972973

 Chariot: 1.13513514

 Archer: 0.533333333

 Swordsman: 0.288461538

Appendix C

Test cases

Description Unit and Integration Tests were created to test the correct be-

havior of the functionality. Appendix C contains the list of created test

cases.

o

1 Unit Tests
Class to Test Testcase Expected Result

DecisionResearchTechnologies ResearchQueueFull The NPC shall not try to
research any technologies if
the research queue is full.

DecisionResearchTechnologies NoResourches The NPC shall not try to
research any technologies if
no resources are available.

DecisionResearchTechnologies DoResearch The NPC shall try to research
technologies that are needed.

DecisionTrainUnits TrainingQueueFull The NPC shall not try to train
units if the training queue is
full.

DecisionTrainUnits NoResourches The NPC shall not try to train
units if no resources are
available.

DecisionTrainUnits DoRecruitment The NPC shall try to train
units if needed.

DecisionUpgradeBuildings BuildingQueueFull The NPC shall not try to
upgrade buildings if the
building queue is full.

DecisionUpgradeBuildings NoResourches The NPC shall not try to
upgrade buildings if no
resources are available.

DecisionUpgradeBuildings DoUpgrade The NPC shall try to upgrade
buildings that need to be
upgraded.

GameTimedZoeCallTaskProvider ProdiveNoTasksIfZoeSleeps The dataprovider shall not
provide any tasks if the NPC
is in state “sleeping”

GameTimedZoeCallTaskProvider ProvideTasks The dataprovider shall
provide the correct amount of
due tasks for each NPC

GameZoeReportTaskHandler CalculateStatistics The AI shall calculate the
correct statistics out of the
fight reports.

2 Integration Tests

Case to Test Testcase Expected Result

Attacking SendAttack An NPC shall attack towns of
other players in case he has
enough units to do so.

Attacking Goals MakeNewGoals The NPC shall create new
goals to attack players if
desired.

Character Decisions MakeDecisions The character decision maker
shall gather the decisions from
all sub modules and execute as
many decisions as possible.

Daily Rythm GoToSleep An NPC shall go to sleep and
wake up the next morning.

Defending DefendTown An NPC shall defend its own
town in case he is being
attacked.

Recruiting RecruitUnits An NPC shall recruit units
based on goals and the
predefined strategy.

Report Handling HandleFightReports The AI shall handle fight
reports for NPCs and calculate
statistics about used units.

Researching DoResearch An NPC shall research needed
technologies in the Academy.

Strategy Decisions MakeDecisions The stratefy decision maker
shall gather the decisions from
all sub modules and execute as
many decisions as possible.

Supporting SendSupport An NPC shall support its own
towns with units in case a town
is attacked and enough
defensinve units are available.

Upgrading Buildings UpgradeBuilding An NPC shall upgrade its
buildings based on the chosen
strategy.

	Introduction
	Background
	InnoGames GmbH
	Grepolis
	Project Management
	Agile development
	Versioning and branching using Git
	Documentation

	Artificial Intelligence in Video Games
	Game AI versus Academic AI
	Simplicity versus Complexity
	Cheating in Game AI
	Decision Making
	Rule Based AI
	Decision Trees
	State Machines
	Goal-Oriented Behavior

	Learning in Game AI
	Distinction of needed Techniques

	Analysis
	Grepolis in the Course of Time
	Architecture of Grepolis
	Frontend
	Backend
	Interface to the Frontend Implementations
	Server architecture

	Third Party Tools for Grepolis
	Intelligent Agents versus Bots
	Analysis of Grepolis Tools
	Conclusion of Analysis of Tools for Grepolis

	Requirement Analysis
	Milestones

	Conception
	Programming Technology
	Abilities of the AI
	AI Model
	Conception of Decision Making
	Evaluation of Decision Making Techniques
	The Decision Making Model

	Implementation
	Daemon
	Design Patterns
	Object Oriented Programming
	Factory Pattern
	Singleton Pattern
	Transactions

	The AI
	Implementation in the Backend
	Implementation of Decision Making
	Learning and Adaption
	Strategies
	Daily Rhythm

	Admin Tool
	Quality Assurance

	Conclusion
	Evaluating the AI
	Horizontal and vertical Robustness
	Long-Term Evaluation
	Simulation of Live Worlds
	Individuality of Decisions

	Results
	Limitations
	Outlook

	Requirements Analysis Document
	Learning the Fight System
	Test cases

